Skip to main content
Log in

Prediction of compressive strength based on visualization of pellet microstructure data

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In recent years, with the wide application of image data visual extraction technology in the field of industrial engineering, the development of industrial economy has reached a new situation. To explore the interaction between the pellet microstructure and compressive strength, firstly, the pellet microstructure needed for the experiment was obtained using a Leica DM4500P microscope. The area proportions of hematite, calcium ferrite, magnetite, calcium silicate and pore in pellet microstructure were extracted by visual extraction technology of image data. Moreover, the relationship between the area proportions of mineral components and compressive strength was established by backpropagation neural network (BPNN), generalized regression neural network (GRNN) and beetle antennae search-generalized regression neural network (BAS-GRNN) algorithms, which proves that the pellet microstructure can be used as the prediction standard of compressive strength. The errors of BPNN and BAS-GRNN are 5.13% and 3.37%, respectively, both of which are less than 5.5%. Therefore, through data visualization, we are able to discuss the connection between various components of pellet microstructure and compressive strength and provide new research ideas for improving the compressive strength and metallurgical performance of pellet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Xing, H. Xu, Y. Tan, X. Liu, Q. Ye, Constr. Build. Mater. 200 (2019) 781–789.

    Article  Google Scholar 

  2. J.D. Tournier, R. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, D. Christiaens, B. Jeurissen, C.H. Yeh, A. Connelly, NeuroImage 202 (2019) 116137.

    Article  Google Scholar 

  3. K. Schnittker, E. Arrieta, X. Jimenez, D. Espalin, R.B. Wicker, D.A. Roberson, Addit. Manuf. 26 (2019) 129–137.

    Google Scholar 

  4. H. Tang, D. Li, J. Wan, M. Imran, M. Shoaib, IEEE Internet Things J. 7 (2020) 4248–4259.

    Article  Google Scholar 

  5. Q. Zhang, H. Li, J.L. Ma, H.Y. Xu, B.Y. Yu, G. Wang, S. Jiang, J. Iron Steel Res. Int. 26 (2019) 529–546.

    Article  Google Scholar 

  6. F. Chen, Y.F. Guo, T. Jiang, F.Q. Zheng, S. Wang, L.Z. Yang, J. Iron Steel Res. Int. 24 (2017) 266–272.

    Article  Google Scholar 

  7. S. Dwarapudi, T.K. Ghosh, V. Tathavadkar, M.B. Denys, D. Bhattacharjee, R. Venugopal, Int. J. Miner. Process. 112–113 (2012) 55–62.

    Article  Google Scholar 

  8. A.M. Yang, Y.X. Zhuansun, Y. Shi, H.X. Liu, Y.J. Chen, R.S. Li, IEEE Trans. Ind. Informat. 17 (2021) 934–942.

    Article  Google Scholar 

  9. S. Mun, S. Park, D.K. Han, H. Ko, in: Proc. DCASE, Munich, Germany, 2017, pp. 93–97.

    Google Scholar 

  10. N.B. Bahadure, A.K. Ray, H.P. Thethi, Int. J. Biomed. Imag. 2017 (2017) 9749108.

    Article  Google Scholar 

  11. Y.F. Chen, L.G. Shen, R.J. Li, X.C. Xu, H.C. Hong, H.G. Lin, J.R. Chen, J. Colloid Interf. Sci. 565 (2020) 1–10.

    Article  Google Scholar 

  12. D. Bani-Hani, M. Khasawneh, Expert Syst. Appl. 135 (2019) 273–286.

    Article  Google Scholar 

  13. Y. Dai, J. Guo, L. Yang, W. You, Procedia Computer Science 147 (2019) 519–527.

    Article  Google Scholar 

  14. Y. Hu, J. Li, M. Hong, J. Ren, R. Lin, Y. Liu, M. Liu, Y. Man, Energy 170 (2019) 1215–1227.

    Article  Google Scholar 

  15. R. Rooki, Measurement 85 (2016) 184–191.

    Article  Google Scholar 

  16. J. Sun, W. Liu, Y. Hu, J. Wu, M. Li, X. Yang, W. Wang, M. Xu, Chem. Eng. J. 285 (2016) 293–303.

    Article  Google Scholar 

  17. G.P. Luo, B. Zhao, J.Q. Liu, Z.Z. Hao, Sinter. Pelletiz. 40 (2015) No. 5, 25–27.

    Google Scholar 

  18. F. Nellros, M.J. Thurley, Miner. Eng. 24 (2011) 1525–1531.

    Article  Google Scholar 

  19. J. Cheng, Y. Xiong, Procedia Computer Science 107 (2017) 355–360.

    Article  Google Scholar 

  20. X.Y. Jiang, S. Li, arXiv preprint arXiv:1710.10724, 2017.

  21. X.Y. Jiang, Z.Y. Lin, T.H. He, X.J. Ma, S.L. Ma, S. Li, IEEE Access 8 (2020) 15459–15471.

    Article  Google Scholar 

  22. Z.S. Luo, M.Y. Yao, J.H. Luo, X.W. Wang, Surface Technology 47 (2018) No. 11, 173–180.

    Google Scholar 

  23. W. Wei, H. Zheng, R. Xu, F. Wu, W. Chen, B. Jia, Z. Xue, Metall. Res. Technol. 116 (2019) 117.

    Article  Google Scholar 

  24. Z. Di, Z. Li, R. Wei, Y. Liu, Q. Meng, T. Chun, H. Long, J. Li, P. Wang, Ironmak. Steelmak. 46 (2019) 159–164.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (51674121) and Fund for Distinguished Youth Scholars in North China University of Science and Technology (JQ201705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-xi Zhuansun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Am., Zhuansun, Yx. Prediction of compressive strength based on visualization of pellet microstructure data. J. Iron Steel Res. Int. 28, 651–660 (2021). https://doi.org/10.1007/s42243-021-00604-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00604-3

Keywords

Navigation