Skip to main content

Advertisement

Log in

Experimental and Numerical studies on remediation of mixed metal-contaminated sediments by electrokinetics focusing on fractionation changes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Electrokinetic remediation technique is widely applied for the removal of heavy metal from contaminated soil, but the soil buffering capacity and fractionation of heavy metals mainly affect the cost and duration of the treatment. This study aims to treat heavy metal-contaminated sediments by electrokinetic remediation (EKR) technique by using various enhancing agents such as EDTA, \({HNO_3}\), HCI, \({H_2SO_4}\), acetic acid and citric acid for optimizing the cost and treatment duration. The optimum molar concentration of enhancing agent for treatment was estimated by batch experiments to maximize the dissolution of target heavy metals and reduce the dissolution of earth metals (Fe, Al and Ca) to maintain soil health. The EKR experiments were performed up to 15 days with the above enhancing agents to reduce the risk associated with heavy metals and the selection of enhancing agents based on removal efficiency was found to be in an order of EDTA > citric acid > acetic acid > \({HNO_3}\) > HCl \(\ge\) \({H_2SO_4}\). Also, a numerical model has been developed by incorporating main electrokinetic transport phenomena (electromigration and electroosmosis) and geochemical processes for the prediction of treatment duration and to scale up the EKR process. The model predicts well with experimental heavy metal removal with a MAPD of \(\approx\) 2-18 %. The parametric study on electrode distance for full-scale EKR treatment was found in this study as \(\approx\) 0.5 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

Data will be made available on reasonable request.

References

  • Acar, Y. B., & Alshawabkeh, A. N. (1993). Principles of electrokinetic remediation. Environmental Science & Technology, 27(13), 2638–2647. https://doi.org/10.1021/es00049a002

    Article  CAS  Google Scholar 

  • Alshawabkeh, A. N., & Acar Y. B. (1992). Journal of Environmental Science and Health . Part A : Environmental Science and Engineering and Toxicology : Toxic / Hazardous Substances and Environmental Engineering Removal of contaminants from soils by electrokinetics : A theoretical treatise. Journal of environmental science and health, 27(7):1835–1861.

  • Alshawabkeh, A. N., Yeung, A. T., & Bricka, M. R. (1999). Practical Aspects of In-Situ Electrokinetic Extraction. Journal of Environmental Engineering, 125(1), 27–35. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:1(27)

  • Alshawabkeh, A. N., Sheahan, T. C., & Wu, X. (2004). Coupling of electrochemical and mechanical processes in soils under DC fields. Mechanics of Materials, 36(5–6), 453–465. https://doi.org/10.1016/S0167-6636(03)00071-1

    Article  Google Scholar 

  • Amiard, J. C., Geffard, A., Amiard-Triquet, C., & Crouzet, C. (2007). Relationship between the lability of sediment-bound metals (Cd, Cu, Zn) and their bioaccumulation in benthic invertebrates. Estuarine, Coastal and Shelf Science, 72(3), 511–521. https://doi.org/10.1016/j.ecss.2006.11.017

    Article  CAS  Google Scholar 

  • Amrate, S., & Akretche, D. E. (2005). Modeling EDTA enhanced electrokinetic remediation of lead contaminated soils. Chemosphere, 60(10), 1376–1383. https://doi.org/10.1016/j.chemosphere.2005.02.021

  • Amrate, S., Akretche, D. E., Innocent, C., & Seta, P. (2005). Removal of Pb from a calcareous soil during EDTA-enhanced electrokinetic extraction. Science of The Total Environment, 349(1–3), 56–66. https://doi.org/10.1016/j.scitotenv.2005.01.018

  • Anderson, P. R., & Christensen, T. H. (1988). Distribution coefficients of Cd Co, Ni, and Zn in soils. Journal of Soil Science, 39(1), 15–22. https://doi.org/10.1111/j.1365-2389.1988.tb01190.x

  • Ayyanar, A., & Thatikonda, S. (2020a). Distribution and ecological risks of heavy metals in Lake Hussain Sagar, India. Acta Geochimica, 39(2), 255–270. https://doi.org/10.1007/s11631-019-00360-y

  • Ayyanar, A., & Thatikonda, S. (2020b). Enhanced electrokinetic remediation (EKR) for heavy metal-contaminated sediments focusing on treatment of generated effluents from EKR and recovery of EDTA. Water Environment Research p wer.1369. https://onlinelibrary.wiley.com/doi/abs/10.1002/wer.1369

  • Ayyanar, A., & Thatikonda, S. (2020c). Enhanced Electrokinetic Removal of Heavy Metals from a Contaminated Lake Sediment for Ecological Risk Reduction. Soil and Sediment Contamination: An International Journal, 00(00), 1–23. https://doi.org/10.1080/15320383.2020.1783510

  • Bahemmat, M., Farahbakhsh, M., & Kianirad, M. (2016). Humic substances-enhanced electroremediation of heavy metals contaminated soil. Journal of Hazardous Materials, 312:307–318. https://doi.org/10.1016/j.jhazmat.2016.03.038

  • Barlas, N., Akbulut, N., & AydoSan, M. (2005). Assessment of heavy metal residues in the sediment and water samples of Uluabat Lake, Turkey. Bulletin of Environmental Contamination and Toxicology, 74(2), 286–293. https://doi.org/10.1007/s00128-004-0582-y

  • Bassi, R., Prasher, S. O., & Simpson, B. K. (2000). Extraction of metals from a contaminated sandy soil using citric acid. Environmental Progress, 19(4), 275–282. https://doi.org/10.1002/ep.670190415

  • Belly, R. T., Lauff, J. J., & Goodhue, C. T. (1975). Degradation of Ethylenediaminetetraacetic Acid by Microbial Populations from an Aerated Lagoon. Applied Microbiology, 29(6), 787–794. https://doi.org/10.1128/AEM.29.6.787-794.1975

  • Bi, R., Schlaak, M., Siefert, E., Lord, R., & Connolly, H. (2011). Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere, 83(3), 318–326. https://doi.org/10.1016/j.chemosphere.2010.12.052

  • Cameselle, C., & Gouveia, S. (2018). Phytoremediation of mixed contaminated soil enhanced with electric current. Journal of Hazardous Materials, 361:95–102. https://doi.org/10.1016/j.jhazmat.2018.08.062

  • Cameselle, C., & Pena, A. (2016). Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals. Process Safety and Environmental Protection, 104:209–217. https://doi.org/10.1016/j.psep.2016.09.002

  • Cameselle, C., & Reddy, K. R. (2012). Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochimica Acta, 86:10–22. https://doi.org/10.1016/j.electacta.2012.06.121

  • Carolin, C. F., & Kumar, P. S., Saravanan, A., Joshiba, G. J., Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782–2799. https://doi.org/10.1016/j.jece.2017.05.029

  • Chauhan, G., Pant, K. K., & Nigam, K. D. P. (2015). Chelation technology: a promising green approach for resource management and waste minimization. Environ Sci: Processes Impacts, 17(1), 12–40. https://doi.org/10.1039/C4EM00559G

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007). Competitive sorption and desorption of heavy metals by individual soil components. Journal of Hazardous Materials, 140(1–2), 308–315. https://doi.org/10.1016/j.jhazmat.2006.09.018

  • Davydova, S. (2005) Heavy metals as toxicants in big cities. Microchemical Journal, 79(1–2), 133–136. https://doi.org/10.1016/j.microc.2004.06.010

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Laflche, M. (2008). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1), 1–31. https://doi.org/10.1016/j.jhazmat.2007.10.043

  • Di Palma, L., & Mecozzi, R. (2007). Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. Journal of Hazardous Materials, 147(3), 768–775. https://doi.org/10.1016/j.jhazmat.2007.01.072

  • Di Palma, L., Gonzini, O., & Mecozzi, R. (2011). Use of different chelating agents for heavy metal extraction from contaminated harbour sediment. Chemistry and Ecology, 27(sup1), 97–106. https://doi.org/10.1080/02757540.2010.534084

  • Diatta, J., Wirth, S., & Chudzińska, E. (2010). Application of the Partition Coefficient for Assessing Heavy Metals Mobility Within the Miasteczko Slaskie Zinc Smetler Impact Zone (Poland). Ecological Chemistry and Engineering A, 17(9), 1203–1212.

  • Egli, T. (2001). Biodegradation of Metal-Complexing Aminopolycarboxylic Acids. Journal of Bioscience and Bioengineering, 92(2), 89–97. https://doi.org/10.1263/jbb.92.89

  • EPA. (1999). Understanding variation in partition coefficient, Kd, values. Volume I: The Kd Model, Methods of Measurement, and Application of Chemical Reaction Codes.

  • Feng, H., Han, X., Zhang, W., & Yu, L. (2004). A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Marine Pollution Bulletin, 49(11–12), 910–915. https://doi.org/10.1016/j.marpolbul.2004.06.014

  • Ganugapenta, S., Nadimikeri, J., Chinnapolla, S. R. R. B., Ballari, L., Madiga, R. K. N., & Tella, L. P. (2018). Assessment of heavy metal pollution from the sediment of Tupilipalem Coast, southeast coast of India. International Journal of Sediment Research, 33(3), 294–302. https://doi.org/10.1016/j.ijsrc.2018.02.004

  • Ghosh, M., & Singh, S. P. (2005). A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 133(2), 365–371. https://doi.org/10.1016/j.envpol.2004.05.015

  • Giannis, A., Gidarakos, E., & Skouta, A. (2008). Transport of cadmium and assessment of phytotoxicity after electrokinetic remediation. Journal of Environmental Management, 86(3), 535–544. https://doi.org/10.1016/j.jenvman.2006.12.003

  • Giannis, A., Pentari, D., Wang, J. Y., & Gidarakos, E. (2010). Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils. Journal of Hazardous Materials, 184(1–3), 547–554. https://doi.org/10.1016/j.jhazmat.2010.08.070

  • Gidarakos, E., & Giannis, A. (2006). Chelate agents enhanced electrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH. Water, Air, and Soil Pollution, 172(1–4), 295–312. https://doi.org/10.1007/s11270-006-9080-7

  • Hanay, O., Hasar, H., & Kocer, N. N. (2009). Effect of EDTA as washing solution on removing of heavy metals from sewage sludge by electrokinetic. Journal of Hazardous Materials, 169(1–3), 703–710. https://doi.org/10.1016/j.jhazmat.2009.04.008

  • Henneken, L., Nörtemann, B., & Hempel, D. C. (1995). Influence of physiological conditions on EDTA degradation. Applied Microbiology and Biotechnology, 44(1–2), 190–197. https://doi.org/10.1007/s002530050540

  • Hinck, M. L., Ferguson, J., & Puhaakka, J. (1997). Resistance of EDTA and DTPA to aerobic biodegradation. Water Science and Technology, 35(2–3), 25–31. https://doi.org/10.1016/S0273-1223(96)00911-0

  • Ho, S. V., Athmer, C. J., Sheridan, P. W., & Shapiro, A. P. (1997). Scale-up aspects of the Lasagna® process for in situ soil decontamination. Journal of Hazardous Materials, 55(1–3), 39–60. https://doi.org/10.1016/S0304-3894(97)00016-2

  • Iannelli, R., Masi, M., Ceccarini, A., Ostuni, M. B., Lageman, R., Muntoni, A., Spiga, D., Polettini, A., Marini, A., & Pomi, R. (2015). Electrokinetic remediation of metal-polluted marine sediments: Experimental investigation for plant design. Electrochimica Acta, 181:146–159. https://doi.org/10.1016/j.electacta.2015.04.093

  • Ilyas, S., Anwar, M. A., Niazi, S. B., & Afzal, G. M. (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy, 88(1–4), 180–188. https://doi.org/10.1016/j.hydromet.2007.04.007

  • Jain, C. K., Gurunadha, R. V. V. S., Prakash, B. A, Mahesh, K. K., Yoshida, M., & Kumar, B. A. P. K. M. (2010). Metal fractionation study on bed sediments of Hussainsagar Lake, Hyderabad, India. Environmental Monitoring and Assessment, 166(1–4), 57–67. https://doi.org/10.1007/s10661-009-0984-8

  • Kaushik, A., Kansal, A., Santosh, M., Kumari, S., & Kaushik, C. P. (2009). Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments. Journal of Hazardous Materials, 164(1), 265–270. https://doi.org/10.1016/j.jhazmat.2008.08.031

  • Kim, C., Lee, Y., & Ong, S. K. (2003a). Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere, 51(9), 845–853. https://doi.org/10.1016/S0045-6535(03)00155-3

  • Kim, G. N., Yang, B. I., Moon, J. K., & Lee, K. W. (2009). Vertical electrokinetic-flushing remediation. Separation Science and Technology, 44(10), 2354–2370. https://doi.org/10.1080/01496390902983703

  • Kim, K. J., Kim, D. H., Yoo, J. C., & Baek, K. (2011). Electrokinetic extraction of heavy metals from dredged marine sediment. Separation and Purification Technology, 79(2), 164–169. https://doi.org/10.1016/j.seppur.2011.02.010

  • Kim, S., Kim, J., Kim, K., & Yun, S. (2005). Models and Experiments on Electrokinetic Removal of Pb(II) from Kaolinite Clay. Separation Science and Technology, 39(8), 1927–1951. https://doi.org/10.1081/SS-120030775

  • Kim, S. O., Kim, J. J., Yun, S. T., & Kim, K. W. (2003b). Numerical and experimental studies on Cadmium(II) transport in kaolinite clay under electrical fields. Water, Air and Soil Pollution, 150(Ii):135–162. https://doi.org/10.1023/A:1026181800685

  • Kinniburgh, D. G., van Riemsdijk, W. H., Koopal, L. K., Borkovec, M., Benedetti, M. F., & Avena, M. J. (1999). Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151(1–2), 147–166. https://doi.org/10.1016/S0927-7757(98)00637-2

  • Labanowski, J., Monna, F., Bermond, A., Cambier, P., Fernandez, C., Lamy, I., & van Oort, F. (2008). Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. Environmental Pollution, 152(3):693–701. https://linkinghub.elsevier.com/retrieve/pii/S0269749107003326

  • Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil and Sediment Contamination, 28(4), 380–394. https://doi.org/10.1080/15320383.2019.1592108

  • Li, S., & Ma, Y. (2014). Urbanization, Economic Development and Environmental Change. Sustainability, 6(8), 5143–5161. https://doi.org/10.3390/su6085143

  • Lim, T. T., Tay, J. H., Wang, & J. Y. (2004). Chelating-Agent-Enhanced Heavy Metal Extraction from a Contaminated Acidic Soil. Journal of Environmental Engineering, 130(1), 59–66. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:1(59)

  • Lima, A. T., Hofmann, A., Reynolds, D., Ptacek, C. J., Van Cappellen, P., Ottosen, L. M., Pamukcu, S., Alshawabekh, A., O’Carroll, D. M., Riis, C., Cox, E., Gent, D. B., Landis, R., Wang, J., Chowdhury, A. I. A., Secord, E. L., Sanchez-Hachair, A., Carroll, D. M. O., Riis, C., Cox, E., Gent, D. B., Landis, R., Chowdhury, A. I. A., & Secord, E. L. (2017). Environmental Electrokinetics for a sustainable subsurface. Chemosphere, 181:122–133. https://doi.org/10.1016/j.chemosphere.2017.03.143

  • Liu, P., Jun, Z. H., Li, W. L, Hui, L. Z., Lin W. J., Qin, W. Y., Hua, J. L., Dong L., & Feng, Z. Y. (2011). Analysis of Heavy Metal Sources for Vegetable Soils from Shandong Province, China. Agricultural Sciences in China, 10(1), 109–119. https://doi.org/10.1016/S1671-2927(11)60313-1

  • Liu, S., Wang, Z., Zhang, Y., Liu, Y., Yuan, W., Zhang, T., Liu, Y., Li, P., He, L., & Chen, J. (2019). Distribution and partitioning of heavy metals in large anthropogenically impacted river, the Pearl River, China. Acta Geochimica, 38(2), 216–231. https://doi.org/10.1007/s11631-018-00309-7

  • Long, E. R., Macdonald, D. D., Smith, S. L., Calder, & F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97. https://doi.org/10.1007/BF02472006

  • Ma F, Peng C, Hou D, Wu B, Zhang Q, & Li F, Gu Q (2015). Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil. Journal of Hazardous Materials, 300:546–552. https://doi.org/10.1016/j.jhazmat.2015.07.055

  • Mascia, M., Palmas, S., Polcaro, A. M., Vacca, A., & Muntoni, A. (2007). Experimental study and mathematical model on remediation of Cd spiked kaolinite by electrokinetics. Electrochimica Acta 52, (10 SPEC. ISS.):3360–3365. https://doi.org/10.1016/j.electacta.2006.04.066

  • Mascia, M., Vacca, A., & Palmas, S. (2015). Effect of surface equilibria on the electrokinetic behaviour of Pb and Cd ions in kaolinite. Journal of Chemical Technology and Biotechnology, 90(7), 1290–1298. https://doi.org/10.1002/jctb.4435

  • Masi, M. (2017). Electrokinetic remediation of heavy metal-contaminated marine sediments: experiments and modelling. January. https://doi.org/10.13131/unipi/etd/01122017-120456

  • Masi, M., Ceccarini, A., & Iannelli, R. (2017b). Multispecies reactive transport modelling of electrokinetic remediation of harbour sediments. Journal of Hazardous Materials, 326:187–196. https://doi.org/10.1016/j.jhazmat.2016.12.032

  • Meng, F., Xue, H., Wang, Y., Zheng, B., & Wang, J. (2018). Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil. Environmental Technology (United Kingdom), 39(3), 356–362. https://doi.org/10.1080/09593330.2017.1301565

  • Moghadam, M. J., Moayedi, H., Sadeghi, M. M., & Hajiannia, A. (2016). A review of combinations of electrokinetic applications. Environmental Geochemistry and Health, 38(6), 1217–1227. https://doi.org/10.1007/s10653-016-9795-3

  • Mohamadi, S., Saeedi, M., & Mollahosseini, A. (2019). Enhanced electrokinetic remediation of mixed contaminants from a high buffering soil by focusing on mobility risk. Journal of Environmental Chemical Engineering, p 103470. https://doi.org/10.1016/j.jece.2019.103470

  • Müller, B. (1996). ChemEQL: a program to calculate chemical speciation equilibria titrations, dissolutions, precipitation, adsorption, simple kinetics, and pX-pY diagrams. Swiss Federal Institute for Environmental Science and Technology (EAWAG), Kastanienbaum, Switzerland.

  • Mulligan, C. N., Yong, R. N., Gibbs, & B. F. (2001). Surfactant-enhanced remediation of contaminated soil: A review. Engineering Geology, 60(1–4), 371–380. https://doi.org/10.1016/S0013-7952(00)00117-4

  • Narasimhan, B., & Sri Ranjan, R. (2000). Electrokinetic barrier to prevent subsurface contaminant migration: theoretical model development and validation. Journal of Contaminant Hydrology, 42(1), 1–17. https://doi.org/10.1016/S0169-7722(99)00089-3

  • Olivares-rieumont, S., De La Rosa, D., Lima, L., Graham, D. W., D’Alessandro, K., Borroto, J., Martínez, F., Sánchez, J., De, D., Lima, L., Graham, D. W., Alessandro, K. D., Borroto, J., Mart, F., & Sa, J. (2005). Assessment of heavy metal levels in Almendares River sediments - Havana City, Cuba. Water Research, 39(16), 3945–3953. https://doi.org/10.1016/j.watres.2005.07.011

  • Park, J. S., Kim, S. O., Kim, K. W., Kim, B. R., & Moon, S. H. (2003). Numerical analysis for electrokinetic soil processing enhanced by chemical conditioning of the electrode reservoirs. Journal of Hazardous Materials, 99(1), 71–88. https://doi.org/10.1016/S0304-3894(03)00038-4

  • Park, S. W., Lee, J. Y., Yang, J. S., Kim, K. J., & Baek, K. (2009). Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. Journal of Hazardous Materials, 169(1–3), 1168–1172. https://doi.org/10.1016/j.jhazmat.2009.04.039

  • Pazos, M., Gouveia, S., Sanromán, M. A., & Cameselle, C. (2008). Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay. Journal of Environmental Science and Health, Part A, 43(8), 823–831. https://doi.org/10.1080/10934520801974004

  • Perin, G., Craboledda, L. D. F., Lucchese, M. G., Cirillo, R., & Dotta, L. (1985). Heavy Metal Speciation in the Sediments of Northern Adriatic Sea: A new Approach for Environmental Toxicity Determination.

  • Pociecha, M., Kastelec, D., & Lestan, D. (2011). Electrochemical EDTA recycling after soil washing of Pb, Zn and Cd contaminated soil. Journal of Hazardous Materials, 192(2), 714–721. https://doi.org/10.1016/j.jhazmat.2011.05.077

  • Qiao, J., Sun, H., Luo, X., Zhang, W., Mathews, S., & Yin, X. (2017). EDTA-assisted leaching of Pb and Cd from contaminated soil. Chemosphere, 167(1–3), 422–428. https://doi.org/10.1016/j.chemosphere.2016.10.034

  • Reddy, K. R., & Chinthamreddy, S. (2003). Sequentially Enhanced Electrokinetic Remediation of Heavy Metals in Low Buffering Clayey Soils. Journal of Geotechnical and Geoenvironmental Engineering, 129(3), 263–277. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(263)

  • Rozas, F., & Castellote, M. (2012). Electrokinetic remediation of dredged sediments polluted with heavy metals with different enhancing electrolytes. Electrochimica Acta, 86, 102–109. https://doi.org/10.1016/j.electacta.2012.03.068

  • Ryu, B. G., Park, S. W., Baek, K., & Yang, J. S. (2009). Pulsed electrokinetic decontamination of agricultural lands around abandoned mines contaminated with heavy metals. Separation Science and Technology, 44(10), 2421–2436. https://doi.org/10.1080/01496390902983778

  • Schultz, D. S. (1997). Electroosmosis technology for soil remediation : Laboratory results, field trial, and economic modeling. Journal of Hazardous Materials, 55(1–3), 81–91. https://doi.org/10.1016/S0304-3894(97)00014-9

  • Yuan S. S., & Heng, F. Z. (2004). Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans. Hydrometallurgy, 75(1–4), 1–10. https://doi.org/10.1016/j.hydromet.2004.05.008

  • Smith, R. M., & Martell, A. E. (1976). Critical stability constants: inorganic complexes, vol 4. Springer.

  • Song, Y., Ammami, M. T., Benamar, A., Mezazigh, S., & Wang, H. (2016). Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environmental Science and Pollution Research, 23(11), 10577–10586. https://doi.org/10.1007/s11356-015-5966-5

  • Srinivasan, V., Seto, K. C., Emerson, R., & Gorelick, S. M. (2013). The impact of urbanization on water vulnerability: A coupled human-environment system approach for Chennai, India. Global Environmental Change, 23(1), 229–239. https://doi.org/10.1016/j.gloenvcha.2012.10.002

  • Sun, B., Zhao, F. J., Lombi, E., & McGrath, S. P. (2001). Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 113(2), 111–120. https://doi.org/10.1016/S0269-7491(00)00176-7

  • Suzuki, T., Niinae, M., Koga, T., Akita, T., Ohta, M., & Choso, T. (2014). EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 440, 145–150. https://doi.org/10.1016/j.colsurfa.2012.09.050

  • Swarnalatha, K., Letha, J., Ayoob, S., & Nair, A. G. (2015). Risk assessment of heavy metal contamination in sediments of a tropical lake. Environmental Monitoring and Assessment, 187(6), 1–14. https://doi.org/10.1007/s10661-015-4558-7

  • Tang, J., He, J., Xin, X., Hu, H., & Liu, T. (2018). Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment. Chemical Engineering Journal, 334(73), 2579–2592. https://doi.org/10.1016/j.cej.2017.12.010

  • Taylor, P., Alshawabkeh, A. N., Gale, R. J., Ozsu-acar, E., & Bricka, R. M. (1999). Optimization of 2-D Electrode Configuration for Electrokinetic Remediation. Soil and Sediment Contamination, 8(6), 617–635. https://doi.org/10.1080/10588339991339504

  • Thayalakumaran, T. A., Vogeler, I. A., Scotter, D. R. A., Percival, H. J. C., Robinson, B. H. A., & Clothier, B. E. (2003). Leaching of copper from contaminated soil following the application of EDTA. I. Repacked soil experiments and a model. Soil Research, 41(2), 323. http://www.publish.csiro.au/?paper=SR02059

  • Tiedje, J. M. (1975). Microbial degradation of ethylenediaminetetraacetate in soils and sediments. Journal of Applied Microbiology, 30(2), 327–329. https://doi.org/10.1128/AEM.30.2.327-329.1975

  • Vázquez, M. V., Vasco, D. A., Hernández-Luis, F., Grandoso, D., Lemus, M., Benjumea, D. M., & Arbelo, C. D. (2009). Electrokinetic study of the buffer capacity of some soils from Tenerife. Comparison with a volumetric technique. Geoderma, 148(3–4), 261–266. https://doi.org/10.1016/j.geoderma.2008.10.010

  • Villen-Guzman, M., Paz-Garcia, J. M., Rodriguez-Maroto, J. M., Gomez-Lahoz, C., & Garcia-Herruzo, F. (2014). Acid Enhanced Electrokinetic Remediation of a Contaminated Soil using Constant Current Density: Strong vs. Weak Acid. Separation Science and Technology, 49(10), 1461–1468. https://doi.org/10.1080/01496395.2014.898306

  • Villen-Guzman, M., Paz-Garcia, J. M., Amaya-Santos, G., Rodriguez-Maroto, J. M., Vereda-Alonso, C., & Gomez-Lahoz, C. (2015a). Effects of the buffering capacity of the soil on the mobilization of heavy metals. Equilibrium and kinetics. Chemosphere, 131, 78–84. https://doi.org/10.1016/j.chemosphere.2015.02.034

  • Villen-Guzman, M., Paz-Garcia, J. M., Rodriguez-Maroto, J. M., Garcia-Herruzo, F., Amaya-Santos, G., Gomez-Lahoz, C., & Vereda-Alonso, C. (2015b). Scaling-up the acid-enhanced electrokinetic remediation of a real contaminated soil. Electrochimica Acta, 181, 139–145. https://doi.org/10.1016/j.electacta.2015.02.067

  • Villen-Guzman, M., Gomez-Lahoz, C., Garcia-Herruzo, F., Vereda-Alonso, C., Paz-Garcia, J., & Rodriguez-Maroto, J. (2017). Specific Energy Requirements in Electrokinetic Remediation. Transport in Porous Mediahttps://doi.org/10.1007/s11242-017-0965-2

  • Virkutyte, J., Sillanpää, M., & Latostenmaa, P. (2002). Electrokinetic soil remediation - Critical overview. Science of the Total Environment, 289(1–3), 97–121. https://doi.org/10.1016/S0048-9697(01)01027-0

  • Vulava, V. M., & Seaman, J. C. (2000). Mobilization of Lead from Highly Weathered Porous Material by Extracting Agents. Environmental Science & Technology, 34(22), 4828–4834. https://doi.org/10.1021/es001295j

  • Wang, C., Hu, X., Chen, M. L., & Wu, Y. H. (2005). Total concentrations and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industrial wastewater treatment plants. Journal of Hazardous Materials, 119(1–3), 245–249. https://doi.org/10.1016/j.jhazmat.2004.11.023

  • Wang, J. Y., Huang, X. J., & Kao, J. C. M., Stabnikova, O. (2006). Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology. Journal of Hazardous Materials, 136(3), 532–541. https://doi.org/10.1016/j.jhazmat.2006.01.029

  • Wang, L. F., Yang, L. Y., Kong, L. H., Li, S., Zhu, J. R., & Wang, Y. Q. (2014). Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of Nansi Lake, China. Journal of Geochemical Exploration, 140:87–95. https://doi.org/10.1016/j.gexplo.2014.02.008

  • Wong, J. S., Hicks, R., & Probstein, R. F. (1997). EDTA-enhanced electroremediation of metal-contaminated soils. Journal of Hazardous Materials, 55(1–3), 61–79. https://doi.org/10.1016/S0304-3894(97)00008-3

  • Yang, J. S. S., Lee, J. Y., Baek, K., Kwon, T. S. S., Choi, J, & Young, J. (2009). Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions. Journal of Hazardous Materials, 171(1–3), 443–451. https://doi.org/10.1016/j.jhazmat.2009.06.021

  • Yeung, A. T., & Gu, Y. Y. (2011). A review on techniques to enhance electrochemical remediation of contaminated soils. Journal of Hazardous Materials, 195, 11–29. https://doi.org/10.1016/j.jhazmat.2011.08.047

  • Yin, K., Giannis, A., Wong, A. S., & Wang, J. Y. (2014). EDTA-enhanced thermal washing of contaminated dredged marine sediments for heavy metal removal. Water, Air, and Soil Pollution, 225(8). https://doi.org/10.1007/s11270-014-2024-8

  • Yoo, J. C., Lee, C. D., Yang, J. S., & Baek, K. (2013). Extraction characteristics of heavy metals from marine sediments. Chemical Engineering Journal, 228(May), 688–699. https://doi.org/10.1016/j.cej.2013.05.029

  • Yoo, J. C., Yang, J. S., Jeon, E. K., & Baek, K. (2015). Enhanced-electrokinetic extraction of heavy metals from dredged harbor sediment. Environmental Science and Pollution Research, 22(13), 9912–9921. https://doi.org/10.1007/s11356-015-4155-x

  • Yoo, J. C, Lee, C., Lee, J. S., & Baek, K. (2017). Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals. Journal of Environmental Management, 186, 314–319. https://doi.org/10.1016/j.jenvman.2016.03.016

  • Zhang, T., Zou, H., Ji, M., Li, X., Li, L., & Tang, T. (2014). Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes. Environmental Science and Pollution Research, 21(4), 3126–3133. https://doi.org/10.1007/s11356-013-2274-9

  • Zhang, Y., Chu, G., Dong, P., Xiao, J., Meng, Q., Baumgartel, M., Xu, B., & Hao, T. (2018). Enhanced electrokinetic remediation of lead- and cadmium-contaminated paddy soil by composite electrolyte of sodium chloride and citric acid. Journal of Soils and Sediments, 18(5), 1915–1924. https://doi.org/10.1007/s11368-017-1890-2

  • Zou, Z., Qiu, R., Zhang, W., Dong, H., Zhao, Z., Zhang, T., Wei, X., & Cai, X. (2009). The study of operating variables in soil washing with EDTA. Environmental Pollution, 157(1), 229–236. https://doi.org/10.1016/j.envpol.2008.07.009

Download references

Acknowledgements

The authors like to acknowledge the support from Frontier Areas of Science and Technology-centre of Excellence (FAST-CoE) in Sustainable Development at Indian Institute of Technology Hyderabad, funded by the Ministry of Human Resource Development, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashidhar Thatikonda.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 28.7.9 MB)

Appendices

Appendix

List of Tables

Table 1 Experimental conditions for the electrokinetic treatment
Table 2 Diffusion coefficient and ionic mobility of target species Park et al. (2003); Kim et al. (2003b)
Table 3 Physicochemical properties of contaminated sediments from Hussain Sagar lake
Table 4 Experimental and model predicted removal efficiencies
Table 5 Log K values for heavy metal complexes formed with various enhancing agents used in EKR treatment (Smith & Martell 1976)
Table 6 Example parameters and cost for EKR treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyanar, A., Thatikonda, S. Experimental and Numerical studies on remediation of mixed metal-contaminated sediments by electrokinetics focusing on fractionation changes. Environ Monit Assess 193, 316 (2021). https://doi.org/10.1007/s10661-021-09064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09064-4

Keywords

Navigation