Skip to main content
Log in

Study on Increasing Measurement Range and Enhancing Sensitivity of PCF Surface-Plasmon-Resonance Biosensor using Black Phosphorus

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We propose a quasi-D-shaped photonic-crystal-fiber surface-plasmon-resonance (PCF-SPR) biosensor based on ultrashort side polishing. The gold film layer of the ultrashort side-polishing PCF-SPR biosensor is close to the fiber core. It can enhance the surface-plasmon-resonance effect and can test the strong interaction between the samples and the difficulties of the process of lateral fiber transfer. We numerically simulate the coupling characteristics of the sensor by the full vector finite element method (FEM). Based on the insulator–metal–insulator (IMI) structure, black phosphorous films are coated on the upper and lower surfaces of the gold film. Numerical calculation results show that the refractive-index measurement ranges of SPR sensors without black phosphorous film and with black phosphorous film are (1.36 – 1.37) and (1.320 – 1.375), respectively. The dynamic sensitivity of the sensor in the second range is 2800 – 8200 nm/RIU. Therefore, one sees that this structure can enhance the sensitivity of the sensor and increase the measurement range of the sensor. The quasi-Dshaped fiber proposed in this paper has advantages of simple fabrication, large measurement range, and high sensitivity. It can also be applied to the fields of biomolecular detection, clinical medicine, and antigen–antibody interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Xia and N. J. Halas, MRS Bull., 30, 338 (2005).

    Article  Google Scholar 

  2. X. M. Wang, C. L. Zhao, Y. R. Wang, et al., J. Lightwave Technol., 34, 2324 (2016).

    Article  ADS  Google Scholar 

  3. J. Homola, S. S. Yee, and G. Gauglitz, Sensors Actuators B: Chem., 54, 3 (1999).

    Article  Google Scholar 

  4. W. R. Wong, O. Krupin, S. D. Sekaran, et al., Anal. Chem., 86, 1735 (2014).

    Article  Google Scholar 

  5. Y. Chongxiu, J. Yuan, and X. Shen, Acta Optica Sinica, 31, 0900139 (2011).

    Article  Google Scholar 

  6. A. Hassani and M. Skorobogatiy, Opt. Express, 14, 11616 (2006).

    Article  ADS  Google Scholar 

  7. A. Hassani and M. Skorobogatiy, J. Opt. Soc. Am. B, 24, 1423 (2007).

    Article  ADS  Google Scholar 

  8. W.-H. Shi, C.-J. You, and J. Wu, Acta Physica Sinica, 64, 224221 (2015).

    Article  Google Scholar 

  9. X. Fu, Y. Lu, X. Huang, and J. Q. Yao, Opt. Appl., 41, 941 (2011).

    Google Scholar 

  10. N. Luan, R. Wang, W. Lv, and J. Yao, Opt. Express, 23, 8576 (2015).

    Article  ADS  Google Scholar 

  11. G. An, S. Li, W. Qin, et al., Plasmonics, 9, 1355 (2014).

    Article  Google Scholar 

  12. Y. B. Zheng, J. Q. Yao, L. Zhang, et al., Optoelectron. Lett., 8, 13 (2012).

    Article  ADS  Google Scholar 

  13. P. Malinský, P. Slepicka, V. Hnatowicz, and V. ˇSvorc´ık, Nanoscale Res. Lett., 7, 1 (2012).

  14. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, et al., Opt. Lett., 28, 393 (2003).

    Article  ADS  Google Scholar 

  15. A. K. Sharma and B. D. Gupta, Opt. Commun., 274, 320 (2007).

    Article  ADS  Google Scholar 

  16. H. O. Churchill and P. Jarillo-Herrero, Nature Nanotechnol., 9, 330 (2014).

    Article  ADS  Google Scholar 

  17. J. Qiao, X. Kong, Z. X. Hu, et al., Nature Commun., 5, 1 (2014).

    Google Scholar 

  18. A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Phys. Rev. Lett., 112, 176801 (2014).

    Article  ADS  Google Scholar 

  19. N. Mao, J. Tang, L. Xie, et al., J. Am. Chem. Soc., 138, 300 (2016).

    Article  Google Scholar 

  20. S. Shukla, N. K. Sharma, and V. Sajal, Sensors Actuators B: Chem., 206, 463 (2015).

    Article  Google Scholar 

  21. L. Wu, J. Guo, Q. Wang, et al., Sensors Actuators B: Chem., 249, 542 (2017).

    Article  Google Scholar 

  22. C. Liu, L. Yang, X. Lu, et al., Opt. Express, 25, 14227 (2017).

    Article  ADS  Google Scholar 

  23. K. Tong and P. Dang, China Laser, 45, 268 (2018).

    Google Scholar 

  24. D. Ying, S.-G. Li, and S. Liu, Chin. Phys. B, 21, 094219 (2012).

    Article  ADS  Google Scholar 

  25. J. N. Dash and Rajan Jha, IEEE Photon. Technol. Lett., 26, 1092 (2014).

  26. Y. Chen, Q. Xie, X. Li, et al., J. Phys. D: Appl. Phys., 50, 025101 (2016).

    Article  ADS  Google Scholar 

  27. L. Y. Niu, Q. Wang, J. Y. Jing, and W. M. Zhao, Opt. Commun., 450, 287 (2019).

    Article  ADS  Google Scholar 

  28. C. Zhou, H. K. Zhang, P. Song, et al., IEEE Photon. Technol. Lett., 32, 589 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, K., Wang, J., Cai, Z. et al. Study on Increasing Measurement Range and Enhancing Sensitivity of PCF Surface-Plasmon-Resonance Biosensor using Black Phosphorus. J Russ Laser Res 42, 283–291 (2021). https://doi.org/10.1007/s10946-021-09961-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09961-6

Keywords

Navigation