Skip to main content
Log in

Modulational Instability of Periodic Standing Waves in the Derivative NLS Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider the periodic standing waves in the derivative nonlinear Schrödinger (DNLS) equation arising in plasma physics. By using a newly developed algebraic method with two eigenvalues, we classify all periodic standing waves in terms of eight eigenvalues of the Kaup–Newell spectral problem located at the end points of the spectral bands outside the real line. The analytical work is complemented with the numerical approximation of the spectral bands, this enables us to fully characterize the modulational instability of the periodic standing waves in the DNLS equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Biagioni, H.A., Linares, F.: Ill-posedness for the derivative Schrödinger and generalized Benjamin–Ono equations. Trans. Am. Math. Soc. 353, 3649–3659 (2001)

    Article  MATH  Google Scholar 

  • Bronski, J.C., Hur, V.M., Johnson, M.A.: Modulational instability in equations of KdV type. New Approaches to Nonlinear Waves. Lecture Notes in Phys., vol. 908, pp. 83–133. Springer, Cham (2016)

    Chapter  Google Scholar 

  • Cao, C.W., Geng, X.G.: Classical integrable systems generated through nonlinearization of eigenvalue problems. Nonlinear Physics (Shanghai, 1989). Research Reports in Physics, pp. 68–78. Springer, Berlin (1990)

    Chapter  Google Scholar 

  • Cao, C.W., Yang, X.: A (2+1)-dimensional derivative Toda equation in the context of the Kaup-Newell spectral problem. J. Phys. A Math. Theor. 41, 025203 (2008). 19 pages

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J., Pelinovsky, D.E.: Rogue periodic waves in the modified Korteweg-de Vries equation. Nonlinearity 31, 1955–1980 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J., Pelinovsky, D.E.: Rogue periodic waves in the focusing nonlinear Schrödinger equation. Proc. R. Soc. Lond. A 474, 20170814 (2018). 18 pages

    MATH  Google Scholar 

  • Chen, J., Pelinovsky, D.E.: Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background. J. Nonlinear Sci. 29, 2797–2843 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J., Pelinovsky, D.E., White, R.E.: Periodic standing waves in the focusing nonlinear Schrödinger equation: Rogue waves and modulation instability. Phys. D 405, 132378 (2020). 13 pages

  • Chen, J., Zhang, R.: The complex Hamiltonian systems and quasi-periodic solutions in the derivative nonlinear Schrödinger equations. Stud. Appl. Math. 145, 153–178 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X.J., Yang, J.: Direct perturbation theory for solitons of the derivative nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation. Phys. Rev. E 65, 066608 (2002). 12 pages

  • Chow, K.W., Ng, T.W.: Periodic solutions of a derivative nonlinear Schrödinger equation: elliptic integrals of the third kind. J. Comput. Appl. Math. 235, 3825–3830 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Colin, M., Ohta, M.: Stability of solitary waves for derivative nonlinear Schrödinger equation. Ann. I.H. Poincaré-AN 23, 753–764 (2006)

    Article  MATH  Google Scholar 

  • Curtis, C.W., Deconinck, B.: On the convergence of Hill’s method. Math. Comput. 79, 169–187 (2010)

  • Deconinck, B., Kutz, J.N.: Computing spectra of linear operators using the Floquet–Fourier–Hill method. J. Comput. Phys. 219, 296–321 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Deconinck, B., Segal, B.L.: The stability spectrum for elliptic solutions to the focusing NLS equation. Phys. D 346, 1–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Deconinck, B., Upsal, J.: The orbital stability of elliptic solutions of the focusing nonlinear Schrödinger equation. SIAM J. Math. Anal. 52, 1–41 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Deconinck, B., Upsal, J.: Real Lax spectrum implies spectral stability. Stud. Appl. Math. 145, 765–790 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Fukaya, N., Hayashi, M., Inui, T.: A sufficient condition for global existence of solutions to a generalized derivative nonlinear Schrödinger equation. Anal. PDEs 10, 1149–1167 (2017)

    Article  MATH  Google Scholar 

  • Geng, X.G., Li, Z., Xue, B., Guan, L.: Explicit quasi-periodic solutions of the Kaup–Newell hierarchy. J. Math. Anal. Appl. 425, 1097–1112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, B.L., Wu, Y.: Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation. J. Differ. Equ. 123, 35–55 (1995)

    Article  MATH  Google Scholar 

  • Hakkaev, S., Stanislavova, M., Stefanov, A.: All non-vanishing bell-shaped solutions for the cubic derivative NLS are stable. arXiv:2006.13658 (2020)

  • Hayashi, M.: Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear Schrödinger equation. Ann. lÍnst. Henri Poincaré C Anal. Non linéaire 36, 1331–1360 (2019)

    Article  MATH  Google Scholar 

  • Hayashi, N., Ozawa, T.: On the derivative nonlinear Schrödinger equation. Phys. D 55, 14–36 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Hayashi, N., Ozawa, T.: Finite energy solution of nonlinear Schrödinger equations of derivative type. SIAM J. Math. Anal. 25, 1488–1503 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Jenkins, R., Liu, J., Perry, P.A., Sulem, C.: Global well-posedness for the derivative nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 43, 1151–1195 (2018)

    Article  MATH  Google Scholar 

  • Johnson, M.A., Zumbrun, K.: Convergence of Hill’s method for nonselfadjoint operators. SIAM J. Numer. Anal. 50, 64–78 (2012)

  • Kamchatnov, A.M.: On improving the effectiveness of periodic solutions of the NLS and DNLS equations. J. Phys. A Math. Gen. 23, 2945–2960 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Kamchatnov, A.M.: New approach to periodic solutions of integrable equations and nonlinear theory of modulational instability. Phys. Rep. 286, 199–270 (1997)

    Article  MathSciNet  Google Scholar 

  • Kamchatnov, A.M.: Evolution of initial discontinuities in the DNLS equation theory. J. Phys. Commun. 2, 025027 (2018). 22 pages

    Article  Google Scholar 

  • Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798–801 (1978)

    Article  MATH  Google Scholar 

  • Kuchment, P.A.: Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  • Kwon, S., Wu, Y.: Orbital stability of solitary waves for derivative nonlinear Schrödinger equation. J. d’ Anal. Math. 135, 473–486 (2018)

  • Lax, P.D.: Integrals of nonlinear equation of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J., Perry, P.A., Sulem, C.: Global existence for the derivative nonlinear Schrödinger equation by the method of inverse scattering. Commun. Partial Differ. Equ. 41, 1692–1760 (2016)

    Article  MATH  Google Scholar 

  • Miao, C., Wu, Y., Xu, G.: Global well-posedness for Schrödinger equation with derivative in \(H^{1/2}({{\mathbb{R}}})\). J. Differ. Equ. 251, 2164–2195 (2011)

    Article  MATH  Google Scholar 

  • Miao, C., Tang, X., Xu, G.: Stability of the traveling waves for the derivative Schrödinger equation in the energy space. Calc. Var. PDEs 56, 45 (2017). 20 pages

    Article  MATH  Google Scholar 

  • Mio, W., Ogino, T., Minami, K., Takeda, S.: Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn. 41, 265–271 (1976)

    Article  MATH  Google Scholar 

  • Mjolhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321–334 (1976)

    Article  Google Scholar 

  • Ma, W.X., Zhou, R.: On the relationship between classical Gaudin models and BC-type Gaudin models. J. Phys. A Math. Gen. 34, 3867–880 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Pelinovsky, D.E., Saalmann, A., Shimabukuro, Y.: The derivative NLS equation: global existence with solitons. Dyn. PDEs 14, 271–294 (2017)

    MathSciNet  MATH  Google Scholar 

  • Pelinovsky, D.E., Shimabukuro, Y.: Existence of global solutions to the derivative NLS equation with the inverse scattering transform method. Int. Math. Res. Notices 2018, 5663–5728 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Pelinovsky, D.E., White, R.E.: Localized structures on librational and rotational travelling waves in the sine–Gordon equation. Proc. R. Soc. Lond. A 476, 20200490 (2020). 18 pages

    MathSciNet  Google Scholar 

  • Qiao, Z.: A new completely integrable Liouville’s system produced by the Kaup–Newell eigenvalue problem. J. Math. Phys. 34, 3110–3120 (1993)

  • Takaoka, H.: Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity. Adv. Differ. Equ. 4, 561–680 (1999)

    MATH  Google Scholar 

  • Weinstein, M.I.: Liapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39, 51–68 (1986)

    Article  MATH  Google Scholar 

  • Wright, O.C.: Maximal amplitudes of hyperelliptic solutions of the derivative nonlinear Schrödinger equation. Stud. Appl. Math. 144, 1–30 (2020)

    Article  Google Scholar 

  • Wu, Y.: Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space. Anal. PDE 6, 1989–2002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, Y.: Global well-posedness on the derivative nonlinear Schrödinger equation. Anal. PDE 8, 1101–1112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, P., Fan, E.G.: Finite gap integration of the derivative nonlinear Schrödinger equation: a Riemann–Hilbert method. Phys. D 402, 132213 (2020). 31 pages

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, R.G.: An integrable decomposition of the derivative nonlinear Schrödinger equation. Chin. Phys. Lett. 24, 589–591 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 11971103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry E. Pelinovsky.

Additional information

Communicated by Peter Miller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Pelinovsky, D.E. & Upsal, J. Modulational Instability of Periodic Standing Waves in the Derivative NLS Equation. J Nonlinear Sci 31, 58 (2021). https://doi.org/10.1007/s00332-021-09713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09713-5

Keywords

Mathematics Subject Classification

Navigation