Skip to main content
Log in

Reversible wettability transition of laser-textured metals after vacuum storing and low-temperature annealing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We analyze vacuum storage-assisted transformation of laser-textured aluminum, copper and stainless steel from hydrophilic to hydrophobic state that occurs only in the case of vacuum pump that uses mineral oils and additives. Energy-dispersive X-ray spectroscopy measurements demonstrate an increase in the carbon-containing components on the metals surface with the increase of the storage time inside the vacuum chamber. The alternative storing of laser-treated hydrophilic samples at the conditions when vacuum was obtained using oil-free pumps did not reveal any change in the wettability properties. Reverse transition from the hydrophobic to the hydrophilic state is achieved by annealing only in oxygen-containing environment. We found that low-temperature annealing of as-prepared laser-textured samples in air did not transform the wettability of the hydrophilic metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. T.T. Isimjan, T. Wang, S. Rohani, Chem. Eng. J. 210, 182 (2012)

    Article  Google Scholar 

  2. F. Chen, D. Zhang, Q. Yang, J. Yong, G. Du, J. Si, F. Yun, X. Hou, A.C.S. Appl, Mater. Interfaces 5, 6777 (2013)

    Article  Google Scholar 

  3. S. Farhadi, M. Farzaneh, S.A. Kulinich, Appl. Surf. Sci. 257, 6264 (2011)

    Article  ADS  Google Scholar 

  4. Y.K. Lai, Y.X. Tang, J.J. Gong, D.G. Gong, L.F. Chi, C.J. Lin, Z. Chen, J. Mater. Chem. 22, 7420 (2012)

    Article  Google Scholar 

  5. J. Bico, C. Tordeux, D. Quere, Eur. Lett. 55, 214 (2001)

    Article  ADS  Google Scholar 

  6. G. McHale, N.J. Shirtcliffe, S. Aqil, C.C. Perry, M.I. Newton, Phys. Rev. Lett. 93, 036102 (2004)

    Article  ADS  Google Scholar 

  7. K.M. Hay, M.I. Dragila, J. Liburdy, J. Colloid Interface Sci. 325, 472 (2008)

    Article  ADS  Google Scholar 

  8. P. Hauschwitz, R. Jagdheesh, D. Rostohar, J. Brajer, J. Kopeček, P. Jiřícek, J. Houdková, T. Mocek, Appl. Surf. Sci. 505, 144523 (2020)

    Article  Google Scholar 

  9. C.-V. Ngo, D.-M. Chun, Appl. Surf. Sci. 435, 974 (2018)

    Article  ADS  Google Scholar 

  10. B.-J. Li, H. Li, L.-J. Huang, N.-F. Ren, X. Kong, Appl. Surf. Sci. 389, 585 (2016)

    Article  ADS  Google Scholar 

  11. C.-V. Ngo, D.-M. Chun, Appl. Surf. Sci. 409, 232 (2017)

    Article  ADS  Google Scholar 

  12. D.-M. Chun, C.-V. Ngo, K.-M. Lee, CIRP Ann.Manufact. Technol. 65, 519 (2016)

    Article  Google Scholar 

  13. J. Long, M. Zhong, P. Fan, D. Gong, H. Zhang, J. Laser Appl. 27, S29107 (2015)

    Article  Google Scholar 

  14. A. Peethan, V.K. Unnikrishnan, S. Chidangil, S. George, Rev. Adhesion Adhesives 7, 331 (2019)

    Article  Google Scholar 

  15. J. Shi, Y. Wang, J. Mater. Sci. 55, 9883 (2020)

    Article  ADS  Google Scholar 

  16. A.S. Alnaser, S.A. Khan, R.A. Ganeev, E. Stratakis, Appl. Sci. 9, 1554 (2019)

    Article  Google Scholar 

  17. C.-V. Ngo, D.-M. Chun, Adv. Eng. Mater. 20, 1701086 (2018)

    Article  Google Scholar 

  18. R. Jagdheesh, M. Diaz, S. Marimuthu, J. Ocana, J. Mater. Chem. A 5, 7125 (2017)

    Article  Google Scholar 

  19. R. Jagdheesh, M. Diaz, S. Marimuthu, J.L. Ocana, Appl. Surf. Sci. 471, 759 (2019)

    Article  ADS  Google Scholar 

  20. S. Khan, G. Boltaev, M. Iqbal, V. Kim, R.A. Ganeev, A.S. Alnaser, Appl. Surf. Sci. 542, 148560 (2021)

    Article  Google Scholar 

  21. R. Jagdheesh, B. Pathiraj, E. Karatay, G. Romer, A.J. Huis in’t Veld, Langmuir 27, 8464 (2017)

    Article  Google Scholar 

  22. P. Bizi-Bandoki, S. Valette, E. Audouard, Appl. Surf. Sci. 273, 399 (2013)

    Article  ADS  Google Scholar 

  23. R. Jagdheesh, J.J. García-Ballesteros, J.L. Ocana, Appl. Surf. Sci. 374, 2 (2016)

    Article  ADS  Google Scholar 

  24. D.V. Ta, A. Dunn, T.J. Wasley, R.W. Kay, J. Stringer, P.J. Smith, C. Connaughton, J.D. Shephard, Appl. Surf. Sci. 357, 248 (2015)

    Article  ADS  Google Scholar 

  25. A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Langmuir 25, 4821 (2009)

    Article  Google Scholar 

  26. J. Long, M. Zhong, H. Zhang, P. Fan, J. Colloid Interface Sci. 441, 1 (2015)

    Article  ADS  Google Scholar 

  27. R. Jagdheesh, M. Diaz, S. Marimuthub, J.L. Ocana, J. Mater. Chem. A 5, 7125 (2017)

    Article  Google Scholar 

  28. M. Psarski, J. Marczak, J. Grobelny, G. Celichowski, J. Nanomater. 2014, 547895 (2014)

    Article  Google Scholar 

  29. A. Glisenti, G. Favero, G. Granozzi, J. Chem. Soc. Faraday Trans. 94, 173 (1998)

    Article  Google Scholar 

Download references

Funding

This work was supported by FRG AS1801 grant and the Common Research Facility at the American University of Sharjah.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, VSY, ASA; methodology, VSY, RAG; investigation, VSY, MI, VVK, SAK; writing—original draft preparation, VSY; writing—review and editing, RAG, ASA.; supervision, ASA; funding acquisition, ASA. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to R. A. Ganeev or A. S. Alnaser.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalishev, V.S., Iqbal, M., Kim, V.V. et al. Reversible wettability transition of laser-textured metals after vacuum storing and low-temperature annealing. Appl. Phys. A 127, 393 (2021). https://doi.org/10.1007/s00339-021-04547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04547-0

Keywords

Navigation