Skip to main content
Log in

Small superimposed radial oscillations for a class of damaged limited elastic tubes

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Small superimposed radial oscillations for a class of damaged limited elastic, incompressible, isotropic and homogeneous thick-walled circular cylindrical tube are examined. Both the damage function and the considered limited elastic class depend only on the first invariant \( I_{1} \) of the left Cauchy–Green deformation tensor. The present work puts some light in the context of the surgical procedure of angioplasty, used especially to treat cardiovascular diseases. Our simplified isotropic assumption allows for a much faster and analytical computation of comparably accurate results. The examples of three limited elastic material models are presented, namely the Arruda–Boyce, Gent, and Demiray. The radial oscillations are further investigated for a damaged limited elastic thin membrane, and the examples above are explored. Universal relations are found for the three material membranes. The obtained results are matched with the clinical data of the existing literature. It appears that the pressure ratio for the virgin and damaged arterial tissue is higher before angioplasty and vice versa. A similar trend for the frequency ratio also follows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. A careful observation of Figure 5 of [17] will assert that the arterial tissue is having the limiting extensibility stretch of \( \lambda _{m}=\lambda _{1M}=1.7827 \). Thus, the limiting value of the invariant is \( I_{m}=I_{1M}=\lambda ^{2}+\dfrac{2}{\lambda }=4.3 \).

References

  1. Ross, R.: Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340(2), 115–126 (1999)

    Article  Google Scholar 

  2. Balzani, D., Brinkhues, S., Holzapfel, G.A.: Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput. Methods Appl. Mech. Eng. 213, 139–151 (2012)

    Article  MathSciNet  Google Scholar 

  3. Diani, J., Fayolle, B., Gilormini, P.: A review on the mullins effect. Eur. Polym. J. 45(3), 601–612 (2009)

    Article  Google Scholar 

  4. Horgan, C.O., Saccomandi, G.: Constitutive modelling of rubber-like and biological materials with limiting chain extensibility. Math. Mech. Solids 7(4), 353–371 (2002)

    Article  MathSciNet  Google Scholar 

  5. Holzapfel, G.A.: Similarities between soft biological tissues and rubberlike materials. In: Constitutive Models for Rubber-Proceedings, Vol. 4, Balkema, p. 607 (2005)

  6. Horgan, C.O., Saccomandi, G.: A description of arterial wall mechanics using limiting chain extensibility constitutive models. Biomech. Model. Mechanobiol. 1(4), 251–266 (2003)

    Article  Google Scholar 

  7. Beatty, M.F.: On constitutive models for limited elastic, molecular based materials. Math. Mech. Solids 13(5), 375–387 (2008)

    Article  MathSciNet  Google Scholar 

  8. Knowles, J.K.: Large amplitude oscillations of a tube of incompressible elastic material. Q. Appl. Mech. XVII I, 71–77 (1960)

    MathSciNet  MATH  Google Scholar 

  9. Knowles, J.K.: On a class of oscillations in the finite-deformation theory of elasticity. J. Appl. Mech. 29(2), 283–286 (1962)

    Article  MathSciNet  Google Scholar 

  10. Truesdell, C.: Solutio generalis et accurata problematum quamplurimorum de motu corporum elasticorum incomprimibilium in deformationibus valde magnis. Arch. Ration. Mech. Anal. 11(1), 106–113 (1962)

    Article  MathSciNet  Google Scholar 

  11. Truesdell, C.: Addendum. Arch. Ration. Mech. Anal. 12(1), 427–428 (1963)

    Article  Google Scholar 

  12. Beatty, M.F.: On the radial oscillations of incompressible, isotropic, elastic and limited elastic thick-walled tubes. Int. J. Non-Linear Mech. 42(2), 283–297 (2007)

    Article  Google Scholar 

  13. Beatty, M.F.: Infinitesimal stability of the equilibrium states of an incompressible, isotropic elastic tube under pressure. J. Elast. 104(1–2), 71–90 (2011)

    Article  MathSciNet  Google Scholar 

  14. Guo, Z.-H., Solecki, R.: Free and forced finite amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material. Arch. Mech. Stos 15(3), 427–433 (1963)

    MathSciNet  MATH  Google Scholar 

  15. Wang, C.-C.: On the radial oscillations of a spherical thin shell in the finite elasticity theory. Q. Appl. Math. 23(3), 270–274 (1965)

    Article  MathSciNet  Google Scholar 

  16. Shahinpoor, M., Balakrishnan, R.: Large amplitude oscillations of thick hyperelastic cylindrical shells. Int. J. Non-Linear Mech. 13(5–6), 295–301 (1978)

    Article  Google Scholar 

  17. Holzapfel, G.A., Gasser, T.C.: Computational stress-deformation analysis of arterial walls including high-pressure response. Int. J. Cardiol. 116(1), 78–85 (2007)

    Article  Google Scholar 

  18. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    Article  Google Scholar 

  19. Chuong, C., Fung, Y.: Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105(3), 268–274 (1983)

    Article  Google Scholar 

  20. Horgan, C.O.: The remarkable Gent constitutive model for hyperelastic materials. Int. J. Non-Linear Mech. 68, 9–16 (2015)

    Article  Google Scholar 

  21. Lawton, R.W., King, A.L.: Free longitudinal vibrations of rubber and tissue strips. J. Appl. Phys. 22(11), 1340–1343 (1951)

    Article  Google Scholar 

  22. Tauheed, F., Sarangi, S.: An invariant based damage model of stress-softening. Mech. Res. Commun. 56, 11–17 (2014)

    Article  Google Scholar 

  23. Arya, K., Sarangi, S.: Effect of damage on the free radial oscillations of an incompressible isotropic tube. Math. Mech. Solids 1081286517712076 (2017)

  24. Arya, K., Sarangi, S.: The effect of damage on small-amplitude radial oscillations of an incompressible isotropic tube under pressure. Eur. J. Mech. A Solids 68, 25–37 (2018)

    Article  Google Scholar 

  25. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of arteries. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 466, The Royal Society, pp. 1551–1597 (2010)

  26. Takamizawa, K., Hayashi, K.: Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20(1), 7–17 (1987)

    Article  Google Scholar 

  27. Kuhn, W., Grün, F.: Beziehungen zwischen elastischen konstanten und dehnungsdoppelbrechung hochelastischer stoffe. Kolloid-Zeitschrift 101(3), 248–271 (1942)

    Article  Google Scholar 

  28. James, H.M., Guth, E.: Theory of the elastic properties of rubber. J. Chem. Phys. 11(10), 455–481 (1943)

    Article  Google Scholar 

  29. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69(1), 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  30. Demiray, H.: A note on the elasticity of soft biological tissues. J. Biomech. 5(3), 309–311 (1972)

    Article  Google Scholar 

  31. Boyce, M.C.: Direct comparison of the gent and the Arruda–Boyce constitutive models of rubber elasticity. Rubber Chem. Technol. 69(5), 781–785 (1996)

    Article  Google Scholar 

  32. Beatty, M.F., Bhattacharyya, R., Sarangi, S.: Small amplitude, free longitudinal vibrations of a load on a finitely deformed stress-softening spring with limiting extensibility. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 60(5), 971–1006 (2009)

    Article  MathSciNet  Google Scholar 

  33. Waller, B.F., Orr, C.M., Slack, J.D., Pinkerton, C.A., Van Tassel, J., Peters, T.: Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-part i. Clin. Cardiol. 15(6), 451–457 (1992)

    Article  Google Scholar 

  34. Siebes, M., Verhoeff, B.-J., Meuwissen, M., de Winter, R.J., Spaan, J.A., Piek, J.J.: Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions. Circulation 109(6), 756–762 (2004)

    Article  Google Scholar 

  35. Han, Y.-F., Liu, W.-H., Chen, X.-L., Xiong, Y.-Y., Yin, Q., Xu, G.-L., Zhu, W.-S., Zhang, R.-L., Ma, M.-M., Li, M., et al.: Severity assessment of intracranial large artery stenosis by pressure gradient measurements: a feasibility study. Catheter. Cardiovasc. Interv. 88(2), 255–261 (2016)

    Article  Google Scholar 

  36. Anderson, H.V., Roubin, G.S., Leimgruber, P.P., Cox, W.R., Douglas, J.S., King, S.B., Gruentzig, A.R.: Measurement of transstenotic pressure gradient during percutaneous transluminal coronary angioplasty. Circulation 73(6), 1223–1230 (1986)

    Article  Google Scholar 

  37. Beekman, R.H., Rocchini, A.P., Dick, M., Snider, A.R., Crowley, D.C., Serwer, G.A., Spicer, R.L., Rosenthal, A.: Percutaneous balloon angioplasty for native coarctation of the aorta. J. Am. Coll. Cardiol. 10(5), 1078–1084 (1987)

    Article  Google Scholar 

  38. De Bruyne, B., Paulus, W.J., Vantrimpont, P.J., Sys, S.U., Heyndrickx, G.R., Pijls, N.H.: Transstenotic coronary pressure gradient measurement in humans: in vitro and in vivo evaluation of a new pressure monitoring angioplasty guide wire. J. Am. Coll. Cardiol. 22(1), 119–126 (1993)

    Article  Google Scholar 

  39. Fawzy, M.E., Sivanandam, V., Galal, O., Dunn, B., Patel, A., Rifai, A., von Sinner, W., Al Halees, Z., Khan, B.: One-to ten-year follow-up results of balloon angioplasty of native coarctation of the aorta in adolescents and adults. J. Am. Coll. Cardiol. 30(6), 1542–1546 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kriti Arya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1. Detailed derivation of Eq. (26)

Appendix 1. Detailed derivation of Eq. (26)

For the forced radial oscillations presented here, the respective Knowles’ equation (17) incorporating the damage function is detailed below:

The deformation gradient for the considered tube problem is given by

$$\begin{aligned} \mathbf{F} =\dfrac{R}{r}{} \mathbf{e} _\mathbf{rr }+\dfrac{r}{R}{} \mathbf{e} _{\varvec{\theta \theta }}+\mathbf{e} _\mathbf{zz }, \end{aligned}$$
(70)

and so the left Cauchy–Green deformation tensor \(\mathbf{B} =\mathbf{F} {} \mathbf{F} ^{T}\) is obtained as

$$\begin{aligned} \mathbf{B} =\dfrac{R^{2}}{r^{2}}{} \mathbf{e} _\mathbf{rr }+\dfrac{r^{2}}{R^{2}}{} \mathbf{e} _{\varvec{\theta \theta }}+\mathbf{e} _\mathbf{zz }. \end{aligned}$$
(71)

The respective principal invariants of \(\mathbf{B} \) are

$$\begin{aligned} \textit{I}_1=\textit{I}_2=1+\dfrac{r^2}{R^2}+\dfrac{R^2}{r^2}=1+u+\dfrac{1}{u}, and \ \textit{I}_3=1. \end{aligned}$$
(72)

Consequently, from the constitutive relation (15) we obtain the principal components of the Cauchy stress \( \mathbf{T} \) as

$$\begin{aligned} T_{rr}=-\textit{q}+\frac{R^2}{r^2}\beta _1\ , \ T_{{\theta }{\theta }}=-\textit{q}+\frac{r^2}{R^2}\beta _1\ , \ T_{zz}=-\textit{q}+\beta _1. \end{aligned}$$
(73)

Thus, use of the equilibrium equation

$$\begin{aligned} Div (\mathbf{T} )=\rho \ddot{r}, \end{aligned}$$
(74)

and the boundary conditions \( T_{rr}=-p_{1}(t) \) and \( T_{rr}=-p_{2}(t) \) at \( r=r_{1} \) and \( r=r_{2} \), respectively, provides the Knowles’ equation (17) for the damaged case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, K., Bhattacharyya, R. & Sarangi, S. Small superimposed radial oscillations for a class of damaged limited elastic tubes. Acta Mech 232, 2765–2780 (2021). https://doi.org/10.1007/s00707-021-02980-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02980-z

Navigation