Skip to main content
Log in

Propagation of conductive crack along interface of piezoelectric/piezomagnetic bimaterials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates the fracture characteristics of a Yoffe conductive crack moving along the interface of piezoelectric (PE)/piezomagnetic (PM) bimaterials. By assuming that the tangential electric- and magnetic-fields along the crack surface are zero and that the speed of the moving crack is lower than the minimum shear wave speed of the bimaterial system, the considered problem can be transformed into a Riemann–Hilbert boundary value problem of vector form. Then, the singularity parameters are exactly solved for different speed regions. In contrast to the anti-plane moving crack model including impermeable and permeable crack-face assumptions along the interface of magnetoelectroelastic (MEE) bimaterials studied before, which shows inverse square-root singularity, three novel kinds of singularities are found as the speed of the moving crack is varied for the present PE/PM interface model, which can be defined as δ1,2 = − 1/2 ± iε (Case 1), δ1,2 = − 1 ± iε (Case 2) and δ1,2 = − 1/2 ± κ (Case 3), and the third parameter δ3 = − 1/2 always holds true for all three cases. Two bimaterial combinations, i.e., BaTiO3/CoFe2O4 and BaTiO3/Terfenol-D, are numerically examined. Different from the piezoelectric case, Case 3 does not appear for BaTiO3/CoFe2O4 bimaterial combination. Above all, the singularity parameters significantly depend on the speed of the moving crack and the material properties of bimaterial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  2. Chen, H.S., Wei, W.Y., Liu, J.X., Fang, D.N.: Propagation of a Mode-III interfacial crack in a piezoelectric-piezomagnetic bi-material. Int. J. Solids Struct. 49, 2547–2558 (2012)

    Article  Google Scholar 

  3. Li, Y.D., Zhao, H., Zhang, N.: Mixed mode fracture of a piezoelectric-piezomagnetic bi-layer structure with two un-coaxial cracks parallel to the interface and each in a layer. Int. J. Solids Struct. 50, 3610–3617 (2013)

    Article  Google Scholar 

  4. Shen, S., Nishioka, T., Hu, S.L.: Crack propagation along the interface of piezoelectric bimaterial. Theor. Appl. Fract. Mech. 34, 185–203 (2000)

    Article  Google Scholar 

  5. Zhou, K., Liu, S.L., Li, Y.D.: Effects of the volume fraction of piezoelectric particles in the magneto-electro-elastic interfacial region on the fracture behavior of a laminate multiferroic plate. Acta Mech. 228, 1229–1248 (2017)

    Article  MathSciNet  Google Scholar 

  6. Zhou, Z.G., Zhou, P.W., Wu, L.Z.: Basic solutions of a 3D rectangular limited-permeable crack or two 3D rectangular limited-permeable cracks in the piezoelectric/piezomagnetic composite materials. Appl. Math. Model. 36, 2404–2428 (2012)

    Article  MathSciNet  Google Scholar 

  7. Yoffe, E.H.: The moving Griffith crack. Philos. Mag. 42, 739–750 (1951)

    Article  MathSciNet  Google Scholar 

  8. Fang, D.N., Liu, J.X.: Fracture Mechanics of Piezoelectric and Ferroelectric Solids. Springer-Verlag, Berlin (2012)

    MATH  Google Scholar 

  9. Zhong, X.C., Li, X.F.: A finite length crack propagating along the interface of two dissimilar magnetoelectroelastic materials. Int. J. Eng. Sci. 44, 1394–1407 (2006)

    Article  Google Scholar 

  10. Hu, K., Chen, Z.: An interface crack moving between magnetoelectroelastic and functionally graded elastic layers. Appl. Math. Model. 38, 910–925 (2014)

    Article  MathSciNet  Google Scholar 

  11. Hu, K., Chen, Z., Fu, J.: Moving Dugdale crack along the interface of two dissimilar magnetoelectroelastic materials. Acta Mech. 226, 2065–2076 (2015)

    Article  MathSciNet  Google Scholar 

  12. Ma, P., Su, R.K.L., Feng, W.J.: Moving crack with a contact zone at interface of magnetoelectroelastic bimaterial. Eng. Fract. Mech. 181, 143–160 (2017)

    Article  Google Scholar 

  13. Fu, R., Qian, C.F., Zhang, T.Y.: Electric fracture toughness for conductive cracks driven by electric fields in piezoelectric materials. Appl. Phys. Lett. 76, 126–128 (2000)

    Article  Google Scholar 

  14. Wang, T., Zhang, T.Y.: Electric fracture toughness for conductive deep notches driven by electric fields in depoled lead zirconate titanate ceramics. Appl. Phys. Lett. 79, 4198–4200 (2001)

    Article  Google Scholar 

  15. Tian, W.Y., Rajapakse, R.K.N.D.: Theoretical modelling of a conducting crack in a magnetoelectroelastic solid. Int. J. Appl. Electrom. Mech. 22, 141–158 (2005)

    Google Scholar 

  16. Ma, P., Su, R.K.L., Feng, W.J.: Fracture analysis of an electrically conductive interface crack with a contact zone in a magnetoelectroelastic bimaterial system. Int. J. Solids Struct. 53, 48–57 (2015)

    Article  Google Scholar 

  17. Wang, X., Zhong, Z., Wu, F.L.: A moving conducting crack at the interface of two dissimilar piezoelectric materials. Int. J. Solids Struct. 40, 2381–2399 (2003)

    Article  Google Scholar 

  18. Wang, Y.Z.: Effects of Maxwell stress on interfacial crack between two dissimilar piezoelectric solids. ASME J. Appl. Mech. 81, 101003 (2014)

    Article  Google Scholar 

  19. Zhang, A.B., Wang, B.L.: The influence of Maxwell stresses on the fracture mechanics of piezoelectric materials. Mech. Mater. 68, 64–69 (2014)

    Article  Google Scholar 

  20. Wang, Y.Z.: Influences of the remanent polarization and Maxwell stress in surrounding medium on a moving anti-plane crack between two dissimilar piezoelectric solids. Theor. Appl. Fract. Mech. 80, 253–258 (2015)

    Article  Google Scholar 

  21. Wang, Y.Z.: Influences of imperfect interface on effective magnetoelectric properties in multiferroic composites with elliptical fibers. Smart Mater. Struct. 24, 045021 (2015)

    Article  Google Scholar 

  22. Wang, X., Zhong, Z.: A conducting arc crack between a circular piezoelectric inclusion and an unbounded matrix. Int. J. Solids Struct. 39, 5895–5911 (2002)

    Article  Google Scholar 

  23. Suo, Z.G., Kuo, C.M., Barnett, D.M.: Fracture mechanics of piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)

    Article  MathSciNet  Google Scholar 

  24. Li, R., Kardomateas, G.A.: The mixed Mode I and II interface crack in piezoelectromagneto–elastic anisotropic bimaterials. ASME J. Appl. Mech. 74, 614–627 (2007)

    Article  Google Scholar 

  25. Kuo, H.Y., Pan, E.: Effective magnetoelectric effect in multicoated circular fibrous multiferroic composites. J. Appl. Phys. 109, 104901 (2011)

    Article  Google Scholar 

  26. Feng, W.J., Pan, E., Wang, X., Liu, J.X.: Rayleigh waves in magneto-electro-elastic half planes. Acta Mech. 202, 127–134 (2009)

    Article  Google Scholar 

  27. Hu, K.Q., Kang, Y.L., Li, G.Q.: Moving crack at the interface between two dissimilar magnetoelectroelastic materials. Acta Mech. 182, 1–16 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

Support from the General Research Fund of Hong Kong (HKU 17223916 ), the National Natural Science Foundation of China (Grant Nos. 11572358 , 10772123 and11072160 ) and the Training Program for Leading Talent in University Innovative Research Team in Hebei Province (LJRC006) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. L. Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Su, R.K.L. & Feng, W.J. Propagation of conductive crack along interface of piezoelectric/piezomagnetic bimaterials. Acta Mech 232, 2781–2791 (2021). https://doi.org/10.1007/s00707-021-02988-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02988-5

Navigation