Skip to main content
Log in

Zero-correlation entanglement vs. Schmidt rank

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we find the minimal number of correlation tests required to certify independence of two classical random variables of arbitrary finite support. Moreover, we completely characterize the constraints implied by zero correlations upon an arbitrary heterogeneous quantum state, and we solve the conjecture proposed by Ohira in 2020. Finally, we find the first ever algorithm for computing (or checking) the Schmidt rank of any unknown pure quantum state using only zero-correlation tests, finding a sufficient amount of tests certifying separability or full entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Berlin, 1933)

    Google Scholar 

  2. T. Ohira, On statistical independence and no-correlation for a pair of random variables taking two values: Classical and quantum. Progress Theo. Exp. Phys. 2018(8), 083A02 (2018)

    Google Scholar 

  3. L.J. Bain, M. Engelhardt, Introduction to Probability and Mathematical Statistics (Brooks/Cole, Cambridge, 1987)

  4. E. Chitambar, G. Gour, Quantum resource theories. Rev. Modern Phys. 91(2), 025001 (2019)

    Google Scholar 

  5. F. Sapienza, F. Cerisola, A.J. Roncaglia, Correlations as a resource in quantum thermodynamics. Nat. commun. 10(1), 1–7 (2019)

    Google Scholar 

  6. A. Tavakoli, B. Marques, M. Pawłowski, M. Bourennane, Spatial versus sequential correlations for random access coding. Phys. Rev. A 93(3), 032336 (2016)

    Google Scholar 

  7. A. Tănăsescu, V.-F. Iliescu, P.G. Popescu, Optimal entanglement-assisted almost-random access codes. Phys. Rev. A 101(4), 042309 (2020)

    Google Scholar 

  8. G. Siopsis, R. Balu, N. Solmeyer, Quantum prisoners’ dilemma under enhanced interrogation. Quantum Information Processing 17(6), 144 (2018)

  9. Z. Huang, H. Situ, L. Zhao, Payoffs and coherence of a quantum two-player game under noisy environment. Eur. Phys. J. Plus 132(4), 1–12 (2017)

    Google Scholar 

  10. S. Muhammad, A. Tavakoli, M. Kurant, M. Pawłowski, M. Żukowski, M. Bourennane, Quantum bidding in bridge. Phys. Rev. X 4(2), 021047 (2014)

    Google Scholar 

  11. S. Gharibian, Strong np-hardness of the quantum separability problem. arXiv preprint arXiv:0810.4507, (2008)

  12. S.-Q. Shen, J.-M. Liang, M. Li, Yu. Juan, S.-M. Fei, Nonlinear improvement of qubit-qudit entanglement witnesses. Phys. Rev. A 101(1), 012312 (2020)

    Google Scholar 

  13. M. Li, Z. Wang, J. Wang, S. Shen, S.-M. Fei, The norms of Bloch vectors and classification of four-qudits quantum states. EPL (Europhys. Lett.) 125(2), 20006 (2019)

    Google Scholar 

  14. A. Tănăsescu, P.-G. Popescu, Bloch vector norms of separable multi-partite quantum systems. EPL (Europhys. Lett.) 126(6), 60003 (2019)

    Google Scholar 

  15. A. Tănăsescu, P.G. Popescu, Separability of heterogeneous quantum systems using multipartite concurrence and tangle. Quantum Inf. Process. 20(2), 1–17 (2021)

    Google Scholar 

  16. X. Wen, Z.-J. Zheng, C.-J. Zhu, S.-M. Fei, Measure and detection of genuine multipartite entanglement for n-partite systems. Euro. Phys. J. Plus 136(1), 1–14 (2021)

    Google Scholar 

  17. Y. Akbari-Kourbolagh, M. Azhdargalam, Entanglement criterion for four-partite systems based on local sum uncertainty relations. Euro. Phys. J. Plus 135(11), 1–12 (2020)

    Google Scholar 

  18. F. Hirsch, M.T. Quintino, J. Bowles, N. Brunner, Genuine hidden quantum nonlocality. Phys. Rev. Lett. 111(16), 160402 (2013)

    Google Scholar 

  19. T. Ohira, Zero-correlation entanglement. Progress Theo. Exp. Phys. 2020(1), 013A01 (2020)

    Google Scholar 

  20. T. Ohira, Minimal correlation measurements for entanglement detection. arXiv preprint arXiv:2007.10605, (2020)

  21. F.T. Hioe, J.H. Eberly, N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 47(12), 838 (1981)

    Google Scholar 

  22. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelimon George Popescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tănăsescu, A., Balan, A. & Popescu, P.G. Zero-correlation entanglement vs. Schmidt rank. Eur. Phys. J. Plus 136, 476 (2021). https://doi.org/10.1140/epjp/s13360-021-01468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01468-y

Navigation