Skip to main content
Log in

A self-similar solution for unsteady adiabatic and isothermal flows behind the shock wave in a non-ideal gas using Lie group analysis method with azimuthal or axial magnetic field in rotating medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The similarity solutions using Lie group analysis for shock wave propagation in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field in the case of isothermal and adiabatic flows are obtained. All possible cases of similarity solutions are discussed using the Lie group analysis for the isothermal and adiabatic flows. The arbitrary constants involved in the generators of local Lie groups bring various possible cases of solutions with exponential law and power law shock paths. Similarity solution for isothermal and adiabatic flows with power law shock path is discussed in detail. The density of ambient medium is taken to be constant. The axial and azimuthal fluid velocities and magnetic field in the ambient medium are assumed to be varying according to power law. The effect on shock wave strength and that on the flow variables due to variation of the Alfven Mach number, adiabatic index of the gas, non-idealness parameter, rotational parameter and initial magnetic field variation exponent are investigated. It is found that these parameters have decaying effects on shock wave. The obtained results in the case of isothermal and adiabatic flows are also compared with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.I. Anisimov, O.M. Spiner, J. Appl. Math. Mech. 36, 883 (1972)

    Article  Google Scholar 

  2. C.C. Wu, P.H. Robert, Phys. Rev. Lett. 70, 3424 (1993)

    Article  Google Scholar 

  3. P.H. Roberts, C.C. Wu, Phys. Lett. A 213, 59 (1996)

    Article  Google Scholar 

  4. J.P. Vishwakarma, G.. Nath, Meccanica 44, 239 (2009)

    Article  Google Scholar 

  5. M.P.R. Rao, N.K. Purohit, Int. J. Eng. Sci. 14, 91 (1976)

    Article  Google Scholar 

  6. J.P. Vishwakarma, A.K. Maurya, K.K. Singh, Geophys. Astrophys. Fluid Dyn. 101, 155 (2007)

    Article  Google Scholar 

  7. J.P. Vishwakarma, V.K. Pandey, Appl. Math. 2, 28 (2012)

    Google Scholar 

  8. J.P. Vishwakarma, G. Nath, Meccanica 42, 331 (2007)

    Article  Google Scholar 

  9. G. Nath, Ain Shams Eng. J. 3, 393 (2012)

    Article  Google Scholar 

  10. G. Nath, Meccanica 50, 1701 (2015)

    Article  Google Scholar 

  11. G. Nath, Acta Astronaut. 156, 100 (2019)

    Article  Google Scholar 

  12. G. Nath, J.P. Vishwakarma, Acta Astronaut. 128, 377 (2016)

    Article  Google Scholar 

  13. P. Gupta, R.K. Chaturvedi, L.P. Singh, Eur. Phys. J. Plus 135, 17 (2020)

    Article  Google Scholar 

  14. G. Nath, J.P. Vishwakarma, Commun. Nonlinear Sci. Numer. Simul. 19, 1347 (2014)

    Article  Google Scholar 

  15. L. Hartmann, Accretion Processes in Star Formation (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  16. B. Balick, A. Frank, Ann. Rev. Astron. Astrophys. 40, 439 (2002)

    Article  Google Scholar 

  17. G. Nath, Adv. Space Res. 47, 1463 (2011)

    Article  Google Scholar 

  18. G. Nath, Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01684-9

  19. S.C. Lin, J. Appl. Phys. 25, 54 (1954)

    Article  Google Scholar 

  20. G. Nath, R.P. Pathak, M. Dutta, Acta Astronaut. 142, 152 (2018)

    Article  Google Scholar 

  21. G. Nath, A. Devi, Int. J. Nonlinear Sci. Numer. Simul. https://doi.org/10.1515/ijnsns-2020-0227 (in press) (2021)

  22. L.I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic Press, New York, 1959)

    Google Scholar 

  23. Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena-II (Academic Press, New York, 1967)

    Google Scholar 

  24. D. Summers, Astron. Astrophys. 45, 151 (1975)

    Google Scholar 

  25. T.S. Lee, T. Chen, Space Sci. 16, 1483 (1968)

    Article  Google Scholar 

  26. T.K. Das, Astrophys. J. 577, 880 (2002)

    Article  Google Scholar 

  27. T.K. Das, J.K. Pendharkar, S. Mitra, Astrophys. J. 592, 1078 (2003)

    Article  Google Scholar 

  28. A.A. Rumyantsev, Sovient Astron. AJ 16, 744 (1973)

    Google Scholar 

  29. G.S. Bisnovatyi-Kogan, Astron. Zh. 47, 813 (1970)

    Google Scholar 

  30. P. Chaturani, Appl. Sci. Res. 23, 197 (1971)

    Article  Google Scholar 

  31. J.P. Viswhwakarma, G. Nath, Phys. Scr. 81, 045401 (2010)

    Article  Google Scholar 

  32. V.A. Levin, G.A. Skopina, J. Appl. Mech. Tech. Phys. 45, 457 (2004)

    Article  Google Scholar 

  33. G. Nath, Meccanica 47, 1797 (2012)

    Article  Google Scholar 

  34. G. Nath, Adv. Space Res. 49, 108 (2012)

    Article  Google Scholar 

  35. J.P. Viswhwakarma, G. Nath, Commun. Nonlinear Sci. Numer. Simul. 17, 154 (2012)

    Article  Google Scholar 

  36. A. Ganguly, M. Jana, Bull. Calcutta Math. Soc. 90, 77 (1998)

    Google Scholar 

  37. K. Fujsawa, H. Okawa, Y. Yamamoto, S. Yamada, Astrophys. J. 872, 155 (2020)

    Article  Google Scholar 

  38. V.A. Levina, I.S. Manuylovicha, V.V. Markova, Proc. Steklov Inst. Math. 300, 135 (2018)

    Article  Google Scholar 

  39. G. Nath, Indian J. Phys. 90, 1055 (2016)

    Article  Google Scholar 

  40. V.P. Korobeinikov, Problems in the theory of point explosion in gases, in Proceedings of the Steklov Institute of Mathematics, No. 119, American Mathematical Society (1976)

  41. D.D. Laumbach, R.F. Probstein, Phys. Fluids 13, 1178 (1970)

    Article  Google Scholar 

  42. P.L. Sachdev, S. Ashraf, J. Appl. Math. Phys. ZAMP 22, 1095 (1971)

    Google Scholar 

  43. T.A. Zhuravskaya, V.A. Levin, J. Appl. Maths. Mech. 60, 745 (1996)

    Article  Google Scholar 

  44. I. Lerche, Aust. J. Phys. 32, 491 (1979)

    Article  Google Scholar 

  45. I. Lerche, Aust. J. Phys. 34, 279 (1981)

    Article  Google Scholar 

  46. A. Solinger, S. Rappaport, J. Buff, Astrophys. J. 201, 381 (1975)

    Article  Google Scholar 

  47. G. Nath, Astron. Astrophys. 76, 265 (2020)

    Google Scholar 

  48. L.V. Ovsiannikkov, Group Analysis of Differential Equations (Academic Press, New York (NY), 1974)

    Google Scholar 

  49. G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations (Springer, NewYork, 1974)

    Book  Google Scholar 

  50. G.W. Bulman, S. Kumei, Symmetries and Differential Equations (Spring, NewYork, NY, 1989)

    Book  Google Scholar 

  51. B. Bira, T. Raja. Sekhar, Appl. Anal. 93, 2598 (2014)

    Article  Google Scholar 

  52. P.J. Olver, Applications of Lie Group to Differential Equations (Springer, New York, 1986)

    Book  Google Scholar 

  53. H. Stephani, Differential Equations: Their Solution Using Symmetries (Cambridge University Press, New York, 1989)

    Google Scholar 

  54. N.H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations (Wiley, Chichester, 1999)

    Google Scholar 

  55. P.E. Hydon, Symmetry Methods for Differential Equations: A Beginner’s Guide (Cambridge University Press, London, 2000)

    Book  Google Scholar 

  56. A. Donato, F. Oliveri, Math. Comput. Model. 18, 83 (1993)

    Article  Google Scholar 

  57. M. Torrisi, J. Eng. Math. 22, 239 (1988)

    Article  Google Scholar 

  58. J.D. Logan, J.D.J. Perez, SIAM J. Appl. Math. 39, 512 (1980)

    Article  Google Scholar 

  59. H.A. Zedan, Appl. Math. Comp. 132, 63 (2002)

    Article  Google Scholar 

  60. F. Conforto, Int. J. Non-Linear Mech. 35, 925 (2000)

    Article  Google Scholar 

  61. F. Oliveri, M.P. Speciale, J. Phys. A 38, 8803 (2005)

    Article  Google Scholar 

  62. L.P. Singh, A. Husain, M. Singh, Chin. Phys. Lett. 27, 014702 (2010)

    Article  Google Scholar 

  63. G. Nath, S. Singh, Int. J. Geom. Method Mod. Phys. 17, 2050123 (2020)

    Article  Google Scholar 

  64. G. Nath, A. Devi, Int. J. Geom. Methods Mod. Phys. 17, 2050148 (2020)

    Article  Google Scholar 

  65. G. Nath, S. Singh, J. Eng. Math. 9, 126 (2021)

    Google Scholar 

  66. G. Nath, S. Singh, Eur. Phys. J. Plus 135, 929 (2020)

    Article  Google Scholar 

  67. G. Nath, A. Devi, Int. J. Appl. Comput. Math. https://doi.org/10.1007/s40819-021-00968-w, (in press) (2021)

  68. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (University Chicago Press, Chicago, 1939)

    Google Scholar 

  69. P. Rosenau, S. Frankenthal, Phys. Fluids 19, 1889 (1976)

    Article  Google Scholar 

  70. M.R. Krumholz, C. Federrath, Front Astron. Space Sci. 6 (2019). https://doi.org/10.3389/fspas.2019.00007

  71. G.J. Hutchens, J. Appl. Phys. 77, 29122915 (1995)

    Article  Google Scholar 

  72. G. Nath, Shock Waves 24, 415 (2014)

    Article  Google Scholar 

  73. G. Nath, Naturforsch. 76, 265 (2021)

    Article  Google Scholar 

  74. S.I. Popel, A.A. Gisko, Nonlinear Process. Geophys. 13, 223 (2006)

    Article  Google Scholar 

  75. L.L. Cowie, Acta Pathol. Jpn. 215, 226 (1977)

    Google Scholar 

  76. I.B. Kosarev, T.V. Loseva, I.V. Nemtchinov, S.I. Popel, Astron. Astrophys. 287, 470 (1994)

    Google Scholar 

  77. S.I. Popel, V.N. Tsytovich, M.Y. Yu, Astrophys. Space Sci. 250, 107 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, G., Devi, A. A self-similar solution for unsteady adiabatic and isothermal flows behind the shock wave in a non-ideal gas using Lie group analysis method with azimuthal or axial magnetic field in rotating medium. Eur. Phys. J. Plus 136, 477 (2021). https://doi.org/10.1140/epjp/s13360-021-01476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01476-y

Navigation