Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 10, 2021

Head-on collision of two ion-acoustic solitons in pair-ion plasmas with nonthermal electrons featuring Tsallis distribution

  • Abderrzak Merriche , Moufida Benzekka and Rabia Amour ORCID logo EMAIL logo

Abstract

The head-on collision between two ion-acoustic solitons (IASs) is studied in pair ions plasmas with hybrid Cairns–Tsallis-distributed electrons. The chosen model is inspired from the experimental studies of Ichiki et al. [Phys. Plasmas 8, 4275 (2001)]. The extended Poincaré–Lighthill–Kuo (PLK) method is employed to obtain the phase shift due to the IASs collision. Both analytical and numerical results reveal that the magnitude of the phase shift is significantly affected by the nonthermal and nonextensive parameters (α and q), the number density ratios (μ and υ) as well as the mass ratio σ. For a given mass ratio σ0.27 (Ar+, SF6), the magnitude of the phase shift ΔQ(0) decreases slightly (increases) with the increase of q (α). The effect of α on ΔQ(0) is more noticeable in the superextensive distribution case (< 1). As σ increases [σ0.89 (Xe+, SF6)], the phase shift becomes wider. In other terms, the phase shift was found to be larger under the effect of higher densities of the negative ions. Our findings should be useful for understanding the dynamics of IA solitons’ head-on collision in space environments [namely, D-regions (H+, O2) and F-regions (H+, H) of the Earth’s ionosphere] and in laboratory double pair plasmas [namely, fullerene (C+, C) and laboratory experiment (Ar+, F)].


Corresponding author: Rabia Amour, Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Physics, University of Bab-Ezzouar, USTHB, B.P. 32, 16111, El Alia, Algiers, Algeria, E-mail:

  1. Author contributions: All authors contributed to the development of the theoretical and numerical models and interpretation of the results.

  2. Research funding: This work was supported in part by the Direction Générale de la Recherche Scientifique et du Développement Technologique Contract No. B00L02UN160420180008.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. V. Goldman, M. M. Oppenheim, and D. L. Newman, “Theory of localized bipolar wave-structures and nonthermal particle distributions in the auroral ionosphere,” Nonlinear Process Geophys., vol. 6, p. 221, 1999, https://doi.org/10.5194/npg-6-221-1999.Search in Google Scholar

[2] R. C. Davidson, Methods in Nonlinear Plasma Theory, New York, Academic, 1972.Search in Google Scholar

[3] R. A. Cairns, A. A. Mamun, R. Bingham et al.., “Electrostatic solitary structures in non-thermal plasmas,” Geophys. Res. Lett., vol. 22, p. 2709, 1995, https://doi.org/10.1029/95gl02781.Search in Google Scholar

[4] M. Khan, M. Abbasi, A. Ahmad, and W. Masood, “Electrostatic shock structures in magnetorotating relativistic plasmas with non-Maxwellian electrons,” AIP Adv., vol. 9, p. 025034, 2019, https://doi.org/10.1063/1.5085489.Search in Google Scholar

[5] N Arab, R Amour, and M Benzekka, “Effect of Cairns–Gurevich polarization force on dust-acoustic solitons in collisionless dusty plasmas,” Eur. Phys. J. Plus vol. 135, p. 872, 2020.10.1140/epjp/s13360-020-00892-wSearch in Google Scholar

[6] Z Ehsan, M Abbasi, G Samirah, M Khan, and A Muddasir, “Shock waves in a rotating non-Maxwellian viscous dusty plasma,” Contrib. Plasma Phys. vol. 60, no. 9. 2020, Art no. e202000030.10.1002/ctpp.202000030Search in Google Scholar

[7] M Abbasi, W Masood, M. Khan, and A Ahmad, “Nonlinear ion acoustic waves in dissipative and dispersive magnetorotating relativistic plasmas with two temperature superthermal electrons,” Contrib. Plasma Phys. vol. 60, no. 9, 2020, Art no. e202000050.10.1002/ctpp.202000050Search in Google Scholar

[8] P. O. Dovner, A. I. Eriksson, R. Boström, and B. Holback, “Freja multiprobe observations of electrostatic solitary structures,” Geophys. Res. Lett., vol. 21, p. 1827, 1994, https://doi.org/10.1029/94gl00886.Search in Google Scholar

[9] R. Boström, “Observations of weak double layers on auroral field lines,” IEEE Trans. Plasma Sci., vol. 20, p. 756, 1992, https://doi.org/10.1109/27.199524.Search in Google Scholar

[10] C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” J. Stat. Phys., vol. 52, p. 479, 1988, https://doi.org/10.1007/bf01016429.Search in Google Scholar

[11] L. Liyan and J. Du, “Ion acoustic waves in the plasma with the power-law q-distribution in nonextensive statistics,” Physica A, vol. 387, p. 4821, 2008, https://doi.org/10.1016/j.physa.2008.04.016.Search in Google Scholar

[12] M. Tribeche, L. Djebarni, and R. Amour, “Ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution,” Phys. Plasmas, vol. 17, p. 042114, 2010, https://doi.org/10.1063/1.3374429.Search in Google Scholar

[13] R. Amour and M. Tribeche, “Semi-analytical study of variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive ion velocity distribution,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, p. 3533, 2011, https://doi.org/10.1016/j.cnsns.2010.12.037.Search in Google Scholar

[14] A. S. Bains, M. Tribeche, and T. S. Gill, “Modulational instability of ion-acoustic waves in a plasma with a q-nonextensive electron velocity distribution,” Phys. Plasmas, vol. 18, p. 022108, 2011, https://doi.org/10.1063/1.3554658.Search in Google Scholar

[15] M. Bacha and M. Tribeche, “Nonextensive dust acoustic waves in a charge varying dusty plasma,” Astrophys. Space Sci., vol. 337, p. 253, 2012, https://doi.org/10.1007/s10509-011-0830-7.Search in Google Scholar

[16] M. Bacha, M. Tribeche, and P. K. Shukla, “Dust ion-acoustic solitary waves in a dusty plasma with nonextensive electrons,” Phys. Rev. E, vol. 85, p. 056413, 2012, https://doi.org/10.1103/physreve.85.056413.Search in Google Scholar

[17] R. Amour, L. Ait Gougam, and M. Tribeche, “Dressed ion-acoustic soliton in a plasma with electrons featuring Tsallis distribution,” Physica A, vol. 43, p. 6, 2015.10.1016/j.physa.2015.05.050Search in Google Scholar

[18] A. Merriche, L. Ait Gougam, and M. Tribeche, “Head-on collision of two ion-acoustic solitary waves in plasmas with electrons described by Tsallis distribution,” Physica A, vol. 442, p. 409, 2016, https://doi.org/10.1016/j.physa.2015.09.053.Search in Google Scholar

[19] J. N. Han, J. X. Li, Y. L. He, Z. H. Han, and G. X. Dong, “The existence of electron-acoustic shock waves and their interactions in a non-Maxwellian plasma with q-nonextensive distributed electrons,” Phys. Plasmas, vol. 20, p. 072109, 2013, https://doi.org/10.1063/1.4816027.Search in Google Scholar

[20] A. Fodil, S. Younsi, and R. Amour, “Effect of external oblique magnetic field on the nonextensive dust acoustic soliton energy,” Eur. Phys. J. Plus, vol. 135, p. 389, 2020, https://doi.org/10.1140/epjp/s13360-020-00404-w.Search in Google Scholar

[21] M. Tribeche, R. Amour, and P. K. Shukla, “Ion acoustic solitary waves in a plasma with nonthermal electrons featuring Tsallis distribution,” Phys. Rev. E, vol. 85, p. 037401, 2012, https://doi.org/10.1103/physreve.85.037401.Search in Google Scholar

[22] M. Benzekka and M. Tribeche, “Nonlinear dust acoustic waves in a charge varying complex plasma with nonthermal ions featuring Tsallis distribution,” Astrophys. Space Sci., vol. 338, p. 63, 2011, https://doi.org/10.1007/s10509-011-0908-2.Search in Google Scholar

[23] R. Amour, M. Tribeche, and P. K. Shukla, “Electron acoustic solitary waves in a plasma with nonthermal electrons featuring Tsallis distribution,” Astrophys. Space Sci., vol. 338, p. 287, 2012, https://doi.org/10.1007/s10509-011-0950-0.Search in Google Scholar

[24] G. Williams, I. Kourakis, F. Verheest, and M. A. Hellberg, “Re-examining the Cairns-Tsallis model for ion acoustic solitons,” Phys. Rev. E, vol. 88, p. 023103, 2013, https://doi.org/10.1103/physreve.88.023103.Search in Google Scholar

[25] A. Merriche and M. Tribeche, “Modulational instability of electron-acoustic waves in a plasma with Cairns-Tsallis distributed electrons,” Physica A, vol. 421, p. 463, 2015, https://doi.org/10.1016/j.physa.2014.11.028.Search in Google Scholar

[26] O. Bouzit, M. Tribeche, and A. S. Bains, “Modulational instability of ion-acoustic waves in plasma with a q-nonextensive nonthermal electron velocity distribution,” Phys. Plasmas, vol. 22, p. 084506, 2015, https://doi.org/10.1063/1.4928891.Search in Google Scholar

[27] A. A. Abid, M. Z. Khan, S. L. Yap, H. Terças, and S. Mahmood, “Dust charging processes with a Cairns-Tsallis distribution function with negative ions,” Phys. Plasmas, vol. 23, p. 013706, 2016, https://doi.org/10.1063/1.4940329.Search in Google Scholar

[28] A. Merriche and M. Tribeche, “Electron-acoustic rogue waves in a plasma with Tribeche-Tsallis-Cairns distributed electrons,” Ann. Phys., vol. 376, p. 436, 2017, https://doi.org/10.1016/j.aop.2016.11.002.Search in Google Scholar

[29] S. Ali Shan and H. Saleem, “Electrostatic instabilities and nonlinear structures associated with field-aligned plasma flows and Cairns-Tsallis electrons in the ionosphere,” Astrophys. Space Sci., vol. 362, p. 145, 2017, https://doi.org/10.1007/s10509-017-3122-z.Search in Google Scholar

[30] S. Rostampooran and S. Saviz, “Investigation of electromagnetic soliton in the Cairns-Tsallis model for plasma,” J. Theor. Appl. Phys., vol. 11, p. 127, 2017, https://doi.org/10.1007/s40094-017-0241-4.Search in Google Scholar

[31] S. Bansal and M. Aggarwal, “Non-planar electron-acoustic waves with hybrid Cairns–Tsallis distribution,” Pramana – J. Phys., vol. 92, p. 49, 2019, https://doi.org/10.1007/s12043-018-1713-z.Search in Google Scholar

[32] C. H. Su and R. M. Mirie, “On head-on collisions between two solitary waves,” J. Fluid Mech., vol. 98, p. 509, 1980, https://doi.org/10.1017/s0022112080000262.Search in Google Scholar

[33] K. E. Lonngren, “Non-planar electron-acoustic waves with hybrid Cairns–Tsallis distribution,” Opt. Quant. Electron., vol. 30, p. 615, 1998, https://doi.org/10.1023/a:1006910004292.10.1023/A:1006910004292Search in Google Scholar

[34] S. C. Tsang, K. S. Chiang, and K. W. Chow, “Soliton interaction in a two-core optical fiber,” Opt. Commun., vol. 229, p. 431, 2004, https://doi.org/10.1016/j.optcom.2003.10.057.Search in Google Scholar

[35] N. J. Zabusky and M. D. Kruskal, “Interaction of “solitons” in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett., vol. 15, p. 240, 1965, https://doi.org/10.1103/physrevlett.15.240.Search in Google Scholar

[36] E. F. El-Shamy, “Head-on collision of ion thermal waves in a magnetized pair-ion plasma containing charged dust impurities,” Phys. Plasmas, vol. 16, p. 113704, 2009, https://doi.org/10.1063/1.3261842.Search in Google Scholar

[37] T. Maxworthy, “On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions,” J. Fluid Mech., vol. 96, p. 47, 1980, https://doi.org/10.1017/s0022112080002017.Search in Google Scholar

[38] E. F. El-Shamy, “Head-on collision of ion thermal solitary waves in pair-ion plasmas containing charged dust impurities,” Eur. Phys. J. D, vol. 56, p. 73, 2010, https://doi.org/10.1140/epjd/e2009-00279-1.Search in Google Scholar

[39] S. K. El-Labany, E. F. El-Shamy, and M. Abu El-Eneen, “Head—on collision of nonlinear dust—acoustic solitary waves in dusty plasmas with dust of opposite polarities,” Astrophys. Space Sci., vol. 337, p. 275, 2012, https://doi.org/10.1007/s10509-011-0846-z.Search in Google Scholar

[40] E. F. El-Shamy, M. Tribeche, and W. F. El-Taibany, “The collisions of two ion acoustic solitary waves in a magnetized nonextensive plasma,” Cent. Eur. J. Phys., vol. 12, p. 805, 2014, https://doi.org/10.2478/s11534-014-0504-5.Search in Google Scholar

[41] S. A. El-Tantawy, W. M. Moslem, R. Sabry, S. K. El-Labany, M. El-Metwally, and R. Schlickeiser, “Head-on collision of ion-acoustic solitons in an ultracold neutral plasma,” Astrophys. Space Sci., vol. 350, p. 175, 2014, https://doi.org/10.1007/s10509-013-1708-7.Search in Google Scholar

[42] M. Akbari-Moghanjoughi, “Propagation and oblique collision of electrostatic solitary waves in quantum pair-plasmas,” Phys. Plasmas, vol. 17, p. 082317, 2010, https://doi.org/10.1063/1.3480307.Search in Google Scholar

[43] N. Ahmed, A. Mannan, N. A. Chowdhury, and A. A. Mamun, “Electrostatic rogue waves in double pair plasmas,” Chaos, vol. 28, p. 123107, 2018, https://doi.org/10.1063/1.5061800.Search in Google Scholar

[44] E. F. EL-Shamy, E. K. El-Shewy, and N. F. Abdo, “On the higher-order phase shift contributions in opposite polarities dust plasmas,” Z. Naturforsch., vol. 74, p. 489, 2019, https://doi.org/10.1515/zna-2018-0386.Search in Google Scholar

[45] S. A. Elwakil, E. K. El-Shewy, and H. G. Abdelwahed, “Envelope ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons,” Phys. Plasmas, vol. 17, p. 052301, 2010, https://doi.org/10.1063/1.3383052.Search in Google Scholar

[46] R. Ichiki, M. Shindo, S. Yoshimura, T. Watanabe, and Y. Kawai, “Ion acoustic waves in one-and two-negative ion species plasmas,” Phys. Plasmas, vol. 8, p. 4275, 2001, https://doi.org/10.1063/1.1396843.Search in Google Scholar

[47] R. Sabry, “Modulation instability of ion thermal waves in a pair-ion plasma containing charged dust impurities,” Phys. Plasmas, vol. 15, p. 092101, 2008, https://doi.org/10.1063/1.2976169.Search in Google Scholar

[48] W. Oohara and R. Hatakeyama, “Pair-ion plasma generation using fullerenes,” Phys. Rev. Lett., vol. 91, p. 205005, 2003, https://doi.org/10.1103/physrevlett.91.205005.Search in Google Scholar

[49] W. F. El Taibany and M. Tribeche, “Nonlinear ion-acoustic solitary waves in electronegative plasmas with electrons featuring Tsallis distribution,” Phys. Plasmas, vol. 19, p. 024507, 2012, https://doi.org/10.1063/1.3684232.Search in Google Scholar

[50] J. N. Han, X. X. Yang, S. C. Li, and W. S. Duan, “Head-on collision of ion-acoustic solitary waves in an unmagnetized electron-positron-ion plasma,” Eur. Phys. J. D, vol. 47, p. 197, 2008, https://doi.org/10.1140/epjd/e2008-00033-3.Search in Google Scholar

[51] H. K. Malik, R. Kumar, K. E. Lonngren, and Y. Nishida, “Collision of ion acoustic solitary waves in a magnetized plasma: effect of dust grains and trapped electrons,” Phys. Rev. E, vol. 92, p. 063107, 2015, https://doi.org/10.1103/physreve.92.063107.Search in Google Scholar

[52] G. Z. Liang, J. N. Han, M. M. Lin, J. N. Wei, and W. S. Duan, “Collisional phase shifts between two colliding solitary waves in a three-dimensional magnetized dusty plasma,” Phys. Plasmas, vol. 16, p. 073705, 2009, https://doi.org/10.1063/1.3184822.Search in Google Scholar

[53] U. N. Ghosh, P. Chatterjee, and R. Roychoudhury, “The effect of q-distributed electrons on the head-on collision of ion acoustic solitary waves,” Phys. Plasmas, vol. 19, p. 012113, 2012, https://doi.org/10.1063/1.3675603.Search in Google Scholar

[54] S. A. El-Tantawy, A. M. Wazwaz, and R. Schlickeiser, “Solitons collision and freak waves in a plasma with Cairns-Tsallis particle distributions,” Plasma Phys. Contr. Fusion, vol. 57, p. 125012, 2015, https://doi.org/10.1088/0741-3335/57/12/125012.Search in Google Scholar

[55] H. G. Abdelwahed, E. K. El-shewy, M. A. Zahran, and S. A. Elwakil, “On the rogue wave propagation in ion pair superthermal plasma,” Phys. Plasmas, vol. 23, p. 022102, 2016, https://doi.org/10.1063/1.4940679.Search in Google Scholar

Received: 2020-11-15
Accepted: 2021-02-14
Published Online: 2021-03-10
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2020-0319/html
Scroll to top button