Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2021

Polyurethane modified epoxy vitrimer and its stress relaxation behavior

  • Weiqiang Lian , Huipeng Han , Xiaoxin Zhang , Guirong Peng ORCID logo EMAIL logo , Zhaojing Jia and Zhenlin Zhang

Abstract

Anhydride cured epoxy vitrimers usually exhibit desired mechanical strength but poor toughness and slow transesterification rate. Therefore, the repairing property of the material was restricted. In this paper, polyurethane modified epoxy vitrimer (PU-Epv) was prepared. PU was introduced into the vitrimer system of tetrahydrophthalic anhydride cured epoxy to improve the toughness of the material. Meanwhile, because of the presence of amino ester, the transesterification reaction was promoted and the activation energy of the transesterification was only 33.59 kJ/mol. In the thermal welding experiment, the material could be welded at least five times, and scratches on the surface of the samples could be efficiently repaired within 30 min. The toughness of the material was improved without damaging the strength. Meanwhile, the hard thermosetting epoxy was endowed with excellent repairing properties to increase the service life of the material.


Corresponding author: Guirong Peng, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao066004, China, E-mail:

Funding source: Heibei Province Foundation for Returness

Award Identifier / Grant number: C20200369

Funding source: Colleges and Universities Science and Technology Research Project of Hebei Province

Award Identifier / Grant number: QN2018107

Award Identifier / Grant number: 51703193

Acknowledgements

We would like to acknowledge Metastable Materials Science and Technology State Key Laboratory, College of Materials Science and Engineering, Yanshan University for help with DSC, FTIR, TG and mechanical properties testing. We need to acknowledge the group of Yingdan Liu for providing the rheometer.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are grateful for the support and funding from the National Natural Science Foundation of China (no. 51703193), Colleges and Universities Science and Technology Research Project of Hebei Province (no. QN2018107), and Heibei Province Foundation for Returness (no. C20200369).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Wang, S., Ma, S., Li, Q., Xu, X., Wang, B., Yuan, W., Zhou, S., You, S., Zhu, J. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite. Green Chem. 2019, 21, 1484–1497; https://doi.org/10.1039/c8gc03477j.Search in Google Scholar

2. Niu, X., Wang, F., Li, X., Zhang, R., Wu, Q., Sun, P. Using Zn2+ ionomer to catalyze transesterification reaction in epoxy vitrimer. Ind. Eng. Chem. Res. 2019, 58, 5698–5706; https://doi.org/10.1021/acs.iecr.9b00090.Search in Google Scholar

3. Van Zee, N. J., Vitrimers, N. R. Permanently crosslinked polymers with dynamic network topology. Prog. Polym. Sci. 2020, 104, 101233; https://doi.org/10.1016/j.progpolymsci.2020.101233.Search in Google Scholar

4. Scheutz, G. M., Lessard, J. J., Sims, M. B., Sumerlin, B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc. 2019, 141, 16181–16196; https://doi.org/10.1021/jacs.9b07922.Search in Google Scholar

5. Spiesschaert, Y., Guerre, M., De Baere, I., Van Paepegem, W., Winne, J. M., Du Prez, F. E. Dynamic curing agents for amine-hardened epoxy Vitrimers with short (re)processing times. Macromolecules 2020, 53, 2485–2495; https://doi.org/10.1021/acs.macromol.9b02526.Search in Google Scholar

6. Lei, H., Wang, S., Liaw, D. J., Cheng, Y., Yang, X., Tan, J., Chen, X., Gu, J., Zhang, Y. Tunable and processable shape-memory materials based on solvent-free, catalyst-free polycondensation between formaldehyde and diamine at room temperature. ACS Macro Lett. 2019, 8, 582–587; https://doi.org/10.1021/acsmacrolett.9b00199.Search in Google Scholar

7. Han, H., Xu, X. Poly(methyl methacrylate)-epoxy vitrimer composites. J. Appl. Polym. Sci. 2018, 135, 46307; https://doi.org/10.1002/app.46307.Search in Google Scholar

8. Roland, G., Jenna, R. J., Kara Lavender, L. Production, use, and fate of all plastics ever made. Science Advances 2017, 3, e1700782; https://doi.org/10.1126/sciadv.1700782.Search in Google Scholar

9. White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797; https://doi.org/10.1038/35057232.Search in Google Scholar

10. Yang, Y., Peng, G., Wu, S., Hao, W. A repairable anhydride-epoxy system with high mechanical properties inspired by vitrimers. Polymer 2018, 159, 162–168; https://doi.org/10.1016/j.polymer.2018.11.031.Search in Google Scholar

11. Yang, X., Guo, Y., Luo, X., Zheng, N., Ma, T., Tan, J., Li, C., Zhang, Q., Gu, J. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 2018, 164, 59–64; https://doi.org/10.1016/j.compscitech.2018.05.038.Search in Google Scholar

12. Fariba, S., Saied Nouri, K., Hadi, R., Rasoul Esmaeely, N., Mohammad Sadegh, K. Single microcapsules containing epoxy healing agent used for development in the fabrication of cost efficient self-healing epoxy coating. Prog. Org. Coating 2018, 114, 40–46; https://doi.org/10.1016/j.porgcoat.2017.09.019.Search in Google Scholar

13. Wang, X., Sun, P., Han, N., Xing, F. Experimental study on mechanical properties and porosity of organic microcapsules based self-healing cementitious composite. Materials 2017, 10, 20; https://doi.org/10.3390/ma10010020.Search in Google Scholar

14. Patrick, J. F., Hart, K. R., Krull, B. P., Diesendruck, C. E., Moore, J. S., White, S. R., Sottos, N. R. Continuous self-healing life cycle in vascularized structural composites. Adv. Mater. 2014, 26, 4302–4308; https://doi.org/10.1002/adma.201400248.Search in Google Scholar

15. Varley, R. J., Craze, D. A., Mouritz, A. P., Wang, C. H. Thermoplastic healing in epoxy networks: exploring performance and mechanism of alternative healing agents. Macromol. Mater. Eng. 2013, 298, 1232–1242; https://doi.org/10.1002/mame.201200394.Search in Google Scholar

16. Hayes, S. A., Zhang, W., Branthwaite, M., Jones, F. R. Self-healing of damage in fibre-reinforced polymer-matrix composites. J. R. Soc. Interface 2007, 4, 381–387; https://doi.org/10.1098/rsif.2006.0209.Search in Google Scholar

17. Hayes, S. A., Jones, F. R., Marshiya, K., Zhang, W. A self-healing thermosetting composite material. Compos. Appl. Sci. Manuf. 2007, 38, 1116–1120; https://doi.org/10.1016/j.compositesa.2006.06.008.Search in Google Scholar

18. Urdl, K., Kandelbauer, A., Kern, W., Müller, U., Thebault, M., Zikulnig-Rusch, E. Self-healing of densely crosslinked thermoset polymers—a critical review. Prog. Org. Coating 2017, 104, 232–249; https://doi.org/10.1016/j.porgcoat.2016.11.010.Search in Google Scholar

19. Oehlenschlaeger, K. K., Mueller, J. O., Brandt, J., Hilf, S., Lederer, A., Wilhelm, M., Graf, R., Coote, M. L., Schmidt, F. G., Barner-Kowollik, C. Adaptable hetero Diels-Alder networks for fast self-healing under mild conditions. Adv. Mater. 2014, 26, 3561–3566; https://doi.org/10.1002/adma.201306258.Search in Google Scholar

20. Chen, X., Dam, M. A., Ono, K., Mal, A., Shen, H., Nutt, S. R., Sheran, K., Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295, 1698–1702; https://doi.org/10.1126/science.1065879.Search in Google Scholar

21. Guadagno, L., Vertuccio, L., Naddeo, C., Calabrese, E., Barra, G., Raimondo, M., Sorrentino, A., Binder, W. H., Michael, P., Rana, S. Self-healing epoxy nanocomposites via reversible hydrogen bonding. Compos. B Eng. 2019, 157, 1–13; https://doi.org/10.1016/j.compositesb.2018.08.082.Search in Google Scholar

22. Yu, K., Shi, Q., Li, H., Jabour, J., Yang, H., Dunn, M. L., Wang, T., Qi, H. J. Interfacial welding of dynamic covalent network polymers. J. Mech. Phys. Solid. 2016, 94, 1–17; https://doi.org/10.1016/j.jmps.2016.03.009.Search in Google Scholar

23. Chen, J. H., An, X. P., Li, Y. D., Wang, M., Zeng, J. B. Reprocessible epoxy networks with tunable physical properties: synthesis, stress relaxation and recyclability. Chin. J. Polym. Sci. 2018, 36, 641–648; https://doi.org/10.1007/s10118-018-2027-9.Search in Google Scholar

24. Capelot, M., Unterlass, M. M., Tournilhac, F., Leibler, L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 2012, 1, 789–792; https://doi.org/10.1021/mz300239f.Search in Google Scholar

25. Capelot, M., Montarnal, D., Tournilhac, F., Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 2012, 134, 7664–7667; https://doi.org/10.1021/ja302894k.Search in Google Scholar

26. Damien, M., Mathieu, C., François, T., Ludwik, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968; https://doi.org/10.1126/science.1212648.Search in Google Scholar

27. Qiu, J., Ma, S., Wang, S., Tang, Z., Li, Q., Tian, A., Xu, X., Wang, B., Lu, N., Zhu, J. Upcycling of polyethylene terephthalate to continuously reprocessable vitrimers through reactive extrusion. Macromolecules 2021, 54, 703–712; https://doi.org/10.1021/acs.macromol.0c02359.Search in Google Scholar

28. Ji, F., Zhou, Y., Yang, Y. Tailoring the structure and properties of epoxy–polyurea vitrimers via controllable network reconfiguration. J. Mater. Chem. 2021, 9, 7172–7179; https://doi.org/10.1039/d0ta12173h.Search in Google Scholar

29. Chen, Q., Yu, X., Pei, Z., Yang, Y., Wei, Y., Ji, Y. Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chem. Sci. 2017, 8, 724–733; https://doi.org/10.1039/c6sc02855a.Search in Google Scholar

30. Huang, Z., Wang, Y., Zhu, J., Yu, J., Hu, Z. Surface engineering of nanosilica for vitrimer composites. Compos. Sci. Technol. 2018, 154, 18–27; https://doi.org/10.1016/j.compscitech.2017.11.006.Search in Google Scholar

31. Smallenburg, F., Leibler, L., Sciortino, F. Patchy particle model for vitrimers. Phys. Rev. Lett. 2013, 111, 188002; https://doi.org/10.1103/physrevlett.111.188002.Search in Google Scholar

32. Yu, K., Taynton, P., Zhang, W., Dunn, M. L., Qi, H. J. Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers. RSC Adv. 2014, 4, 48682–48690; https://doi.org/10.1039/c4ra06543c.Search in Google Scholar

33. Rekondo, A., Martin, R., Ruiz de Luzuriaga, A., Cabañero, G., Grande, H. J., Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237–240; https://doi.org/10.1039/c3mh00061c.Search in Google Scholar

34. Liu, H., Zhang, H., Wang, H., Huang, X., Huang, G., Wu, J. Weldable, malleable and programmable epoxy vitrimers with high mechanical properties and water insensitivity. Chem. Eng. J. 2019, 368, 61–70; https://doi.org/10.1016/j.cej.2019.02.177.Search in Google Scholar

35. Yang, Y., Xu, Y., Ji, Y., Wei, Y. Functional epoxy vitrimers and composites. Prog. Mater. Sci. 2020, 100710; https://doi.org/10.1016/j.pmatsci.2020.100710, In press.Search in Google Scholar

36. Yan, P., Zhao, W., Fu, X., Liu, Z., Kong, W., Zhou, C., Lei, J. Multifunctional polyurethane-vitrimers completely based on transcarbamoylation of carbamates: thermally-induced dual-shape memory effect and self-welding. RSC Adv. 2017, 7, 26858–26866; https://doi.org/10.1039/c7ra01711a.Search in Google Scholar

37. Lu, Y., Tournilhac, F., Leibler, L., Guan, Z. Making insoluble polymer networks malleable via olefin metathesis. J. Am. Chem. Soc. 2012, 134, 8424–8427; https://doi.org/10.1021/ja303356z.Search in Google Scholar

38. Liu, T., Hao, C., Zhang, S., Yang, X., Wang, L., Han, J., Li, Y., Xin, J., Zhang, J. A Self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry. Macromolecules 2018, 51, 5577–5585; https://doi.org/10.1021/acs.macromol.8b01010.Search in Google Scholar

39. Kai, Y., Philip, T., Wei, Z., Martin, L. D., Qi, H. J. Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers. RSC Adv. 2014, 4, 48682–48690; https://doi.org/10.1039/C4RA06543C.Search in Google Scholar

40. Zhang, B., Li, H., Yuan, C., Martin, L. D., Qi, H. J., Yu, K., Shi, Q., Ge, Q. Influences of processing conditions on mechanical properties of recycled epoxy‐anhydride vitrimers. J. Appl. Polym. Sci. 2020, 137, 49246; https://doi.org/10.1002/app.49246.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2020-0328).


Received: 2020-12-03
Accepted: 2021-03-15
Published Online: 2021-04-05
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2020-0328/html
Scroll to top button