Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 19, 2021

Water purification performance enhancement of PVC ultrafiltration membrane modified with tourmaline particles

  • Runze Guan , Weixing Yan , Jingjing Yuan , Xia Feng EMAIL logo and Yiping Zhao EMAIL logo

Abstract

In this study, a novel PVC/tourmaline ultrafiltration membrane was fabricated by phase inversion method in order to improve anti-fouling performance and water quality. FESEM was used to examine the changes in the morphology of pure PVC and PVC/tourmaline hybrid membranes. The introduction of tourmaline resulted in the increase of porosity and mean pore size. EDX images indicated that tourmaline particles were homogeneously dispersed in the membranes when the amount were less than 1.0 wt%. The hybrid membranes exhibited lower contact angle (78.7°) and higher water flux (121.3 L/m2 h) than the pure PVC membrane. The anti-fouling performance of the membranes were studied by filtration of BSA solution. The results demonstrated that the hybrid membrane with 1.0 wt% tourmaline particles exhibited the best anti-fouling performance and the highest BSA rejection. In addition, the pH and conductivity of the filtered water were measured by pH meter and electrical conductivity meter. And the results showed that the quality of the filtered water was improved after treating through the hybrid membranes.


Corresponding authors: Xia FengandYiping Zhao, State Key Laboratory of Separation Membranes and Membrane Process, School of Materials Science and Engineering, Tiangong University, Binshui West Road 399, Tianjin300387, China, E-mail: (X. Feng), (Y. Zhao)
Runze Guan and Weixing Yan contributed equally to this work and are co-first authors.

Funding source: Science and Technology Plans of Tianjin

Award Identifier / Grant number: 17YFZCSF01230

Award Identifier / Grant number: 17PTSYJC00040

Award Identifier / Grant number: 18JCYBJC18100

Award Identifier / Grant number: 18PTSYJC00180

Funding source: University of Ministry of Education of China

Award Identifier / Grant number: IRT-17R80

Funding source: University of Tianjin

Award Identifier / Grant number: TD13-5044

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially sponsored by the Science and Technology Plans of Tianjin (nos. 17YFZCSF01230, 17PTSYJC00040, 18JCYBJC18100 and 18PTSYJC00180), Program for Innovative Research Team in University of Ministry of Education of China (no. IRT-17R80), and Program for Innovative Research Team in University of Tianjin (no. TD13-5044).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Miller, D. J., Dreyer, D. R., Bielawski, C. W., Paul, D. R., Freeman, B. D. Surface modification of water purification membranes. Angew. Chem. Int. Ed. 2017, 56, 4662–4711; https://doi.org/10.1002/anie.201601509.Search in Google Scholar

2. Werber, J. R., Osuji, C. O., Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018–16033; https://doi.org/10.1038/natrevmats.2016.18.Search in Google Scholar

3. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310; https://doi.org/10.1038/nature06599.Search in Google Scholar

4. Kang, S., Hoek, E. M. V., Choi, H., Shin, H. Effect of membrane surface properties during the fast evaluation of cell attachment. Separ. Sci. Technol. 2006, 41, 1475–1487; https://doi.org/10.1080/01496390600634673.Search in Google Scholar

5. Kharraz, J. A., An A. K. patterned superhydrophobic polyvinylidene fluoride (PVDF) membranes for membrane distillation: enhanced flux with improved fouling and wetting resistance. J. Membr. Sci. 2020, 595, 117596; https://doi.org/10.1016/j.memsci.2019.117596.Search in Google Scholar

6. Shenvi, S., Ismail, A. F., Isloor, A. M. Enhanced permeation performance of cellulose acetate ultrafiltration membranes by incorporation of sulfonated poly(1,4-phenylene ether ether sulfone) and poly(styrene-co-maleic anhydride). Ind. Eng. Chem. Res. 2014, 53, 13820–13827; https://doi.org/10.1021/ie502310e.Search in Google Scholar

7. Jiang, L., Zhu, W., Qian, H., Wang, C., Chen, Y., Liu, P. Fabrication of PMPC/PTM/PEGDA micropatterns onto polypropylene films behaving with dual functions of antifouling and antimicrobial activities. J. Mater. Chem. B. 2019, 7, 5078–5088; https://doi.org/10.1039/c9tb00927b.Search in Google Scholar

8. Khayet, M., Feng, C. Y., Matsuura, T. Morphological study of fluorinated asymmetric polyetherimide ultrafiltration membranes by surface modifying macromolecules. J. Membr. Sci. 2003, 213, 159–180; https://doi.org/10.1016/s0376-7388(02)00523-9.Search in Google Scholar

9. Jhaveri, J. H., Patel, C. M., Murthy, Z. V. P. Preparation, characterization and application of GO-TiO2/PVC mixed matrix membranes for improvement in performance. J. Ind. Eng. Chem. 2017, 52, 138–146; https://doi.org/10.1016/j.jiec.2017.03.035.Search in Google Scholar

10. Liu, B., Chen, C., Zhang, W., Crittenden, J., Chen, Y. Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: effect of additives on properties and performance. Desalination 2012, 307, 26–33; https://doi.org/10.1016/j.desal.2012.07.036.Search in Google Scholar

11. Zhang, X., Chen, Y., Konsowa, A. H., Zhu, X., Crittenden, J. C. Evaluation of an innovative polyvinyl chloride (PVC) ultrafiltration membrane for wastewater treatment. Separ. Purif. Technol. 2009, 70, 71–78; https://doi.org/10.1016/j.seppur.2009.08.019.Search in Google Scholar

12. Rabiee, H., Vatanpour, V., Farahani, M. H. D. A., Zarrabi, H. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Separ. Purif. Technol. 2015, 156, 299–310; https://doi.org/10.1016/j.seppur.2015.10.015.Search in Google Scholar

13. Zhang, R., Liu, Y., He, M., Su, Y., Zhao, X., Elimelech, M., Jiang, Z. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924; https://doi.org/10.1039/c5cs00579e.Search in Google Scholar

14. Sun, H., Yang, X., Zhang, Y., Cheng, X., Xu, Y., Bai, Y., Shao, L. Segregation-induced in situ hydrophilic modification of poly (vinylidene fluoride) ultrafiltration membranes via sticky poly (ethylene glycol) blending. J. Membr. Sci. 2018, 563, 22–30; https://doi.org/10.1016/j.memsci.2018.05.046.Search in Google Scholar

15. Zeng, G., Ye, Z., He, Y., Yang, X., Ma, J., Shi, H., Feng, Z. Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater. Chem. Eng. J. 2017, 323, 572–583; https://doi.org/10.1016/j.cej.2017.04.131.Search in Google Scholar

16. Feng, J., Sun, M., Ye, Y. Ultradurable underwater superoleophobic surfaces obtained by vapor-synthesized layered polymer nanocoatings for highly efficient oil–water separation. J. Mater. Chem. A 2017, 5, 14990–14995; https://doi.org/10.1039/c7ta03297h.Search in Google Scholar

17. Wang, J., He, R., Han, X., Jiao, D., Zhu, J., Lai, F., Liu, X., Liu, J., Zhang, Y., Van Der Bruggen, B. High performance loose nanofiltration membranes obtained by a catechol-based route for efficient dye/salt separation. Chem. Eng. J. 2019, 375, 121982; https://doi.org/10.1016/j.cej.2019.121982.Search in Google Scholar

18. Zhu, Y., Wang, J., Zhang, F., Gao, S., Wang, A., Fang, W., Jin, J. Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation. Adv. Funct. Mater. 2018, 28, 201804121; https://doi.org/10.1002/adfm.201804121.Search in Google Scholar

19. Zhu, Y., Zhang, F., Wang, D., Pei, X., Zhang, W., Jin, J. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J. Mater. Chem. A 2013, 1, 5758–5765; https://doi.org/10.1039/c3ta01598j.Search in Google Scholar

20. Song, H. J., Jo, Y. J., Kim, S. Y., Lee, J., Kim, C. K. Characteristics of ultrafiltration membranes fabricated from polysulfone and polymer-grafted silica nanoparticles: effects of the particle size and grafted polymer on the membrane performance. J. Membr. Sci. 2014, 466, 173–182; https://doi.org/10.1016/j.memsci.2014.04.053.Search in Google Scholar

21. Behboudi, A., Jafarzadeh, Y., Yegani, R. Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes. Chem. Eng. Res. Des. 2016, 114, 96–107; https://doi.org/10.1016/j.cherd.2016.07.027.Search in Google Scholar

22. Maximous, N., Nakhla, G., Wan, W., Wong, K. Performance of a novel ZrO2/PES membrane for wastewater filtration. J. Membr. Sci. 2010, 352, 222–230; https://doi.org/10.1016/j.memsci.2010.02.021.Search in Google Scholar

23. Liu, F., Moghareh Abed, M. R., Li, K. Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3. J. Membr. Sci. 2011, 366, 97–103; https://doi.org/10.1016/j.memsci.2010.09.044.Search in Google Scholar

24. Liao, C., Yu, P., Zhao, J., Wang, L., Luo, Y. Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials. Desalination 2011, 272, 59–65; https://doi.org/10.1016/j.desal.2010.12.048.Search in Google Scholar

25. Mishra, G., Mukhopadhyay, M. Enhanced antifouling performance of halloysite nanotubes (HNTs) blended poly(vinyl chloride) (PVC/HNTs) ultrafiltration membranes: for water treatment. J. Ind. Eng. Chem. 2018, 63, 366–379; https://doi.org/10.1016/j.jiec.2018.02.037.Search in Google Scholar

26. Sengur, R., Lannoy, C. F., Turken, T., Wiesner, M., Koyuncu, I. Fabrication and characterization of hydroxylated and carboxylated multiwalled carbon nanotube/polyethersulfone (PES) nanocomposite hollow fiber membranes. Desalination 2015, 359, 123–140; https://doi.org/10.1016/j.desal.2014.12.040.Search in Google Scholar

27. Demirel, E., Zhang, B., Papakyriakou, M., Xia, S., Chen, Y. Fe2O3 nanocomposite PVC membrane with enhanced properties and separation performance. J. Membr. Sci. 2017, 529, 170–184; https://doi.org/10.1016/j.memsci.2017.01.051.Search in Google Scholar

28. Idris, A., Zain, N. M., Noordin, M. Y. Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination 2007, 207, 324–339; https://doi.org/10.1016/j.desal.2006.08.008.Search in Google Scholar

29. Wang, C., Wu, J., Sun, H., Wang, T., Liu, H., Chang, Y. Adsorption of Pb(II) ion from aqueous solutions by tourmaline as a novel adsorbent. Ind. Eng. Chem. Res. 2011, 50, 8515–8523; https://doi.org/10.1021/ie102520w.Search in Google Scholar

30. Tijing, L. D., Ruelo, M. T. G., Amarjargal, A., Pant, H. R., Park, C. H., Kim, D. W., Kim, C. S. Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chem. Eng. J. 2012, 197, 41–48; https://doi.org/10.1016/j.cej.2012.05.005.Search in Google Scholar

31. Wang, F., Xie, Z., Liang, J., Fang, B., Piao, Y., Hao, M., Wang, Z. Tourmaline-modified FeMnTiOx catalysts for improved low-temperature NH3-SCR performance. Environ. Sci. Technol. 2019, 53, 6989–6996; https://doi.org/10.1021/acs.est.9b02620.Search in Google Scholar

32. Yuan, X., Guo, Z., Geng, H., Rhen, D. S., Wang, L., Yuan, X., Li, J. Enhanced performance of conductive polysulfone/MWCNT/PANI ultrafiltration membrane in an online fouling monitoring application. J. Membr. Sci. 2019, 575, 160–169; https://doi.org/10.1016/j.memsci.2019.01.010.Search in Google Scholar

33. Turhan, Y., Doǧan, M., Alkan, M. Poly(vinyl chloride)/kaolinite nanocomposites: characterization and thermal and optical properties. Ind. Eng. Chem. Res. 2010, 49, 1503–1513; https://doi.org/10.1021/ie901384x.Search in Google Scholar

34. Zhao, Y., Lu, J., Liu, X., Wang, Y., Lin, J., Peng, N., Li, J., Zhao, F. Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide. J. Colloid Interface Sci. 2016, 480, 1–8; https://doi.org/10.1016/j.jcis.2016.06.075.Search in Google Scholar

35. Boom, R. M., Boomgaard, T. V. D., Smolders, C. A. Mass transfer and thermodynamics during immersion precipitation for a two-polymer system: evaluation with the system PES–PVP–NMP–water. J. Membr. Sci. 1994, 90, 231–249; https://doi.org/10.1016/0376-7388(94)80074-x.Search in Google Scholar

36. Boom, R. M., Wienk, I. M., Boomgaard, T. V. D., Smolders, C. A. Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J. Membr. Sci. 1992, 73, 277–292; https://doi.org/10.1016/0376-7388(92)80135-7.Search in Google Scholar

37. Xu, Z., Zhang, J., Shan, M., Li, Y., Li, B., Niu, J., Zhou, B., Qian, X. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J. Membr. Sci. 2014, 458, 1–13; https://doi.org/10.1016/j.memsci.2014.01.050.Search in Google Scholar

38. Karimi, A., Khataee, A., Vatanpour, V., Safarpour, M. High-flux PVDF mixed matrix membranes embedded with size-controlled ZIF-8 nanoparticles. Separ. Purif. Technol. 2019, 229, 115838; https://doi.org/10.1016/j.seppur.2019.115838.Search in Google Scholar

39. Han, M. J., Nam, S. T. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J. Membr. Sci. 2002, 202, 55–61; https://doi.org/10.1016/s0376-7388(01)00718-9.Search in Google Scholar

40. Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., Zangeneh, H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014, 453, 292–301; https://doi.org/10.1016/j.memsci.2013.10.070.Search in Google Scholar

41. Yu, Z., Min, X., Li, F., Yin, D., Peng, Y., Zeng, G. A mussel‐inspired method to fabricate a novel reduced graphene oxide/Bi12O17Cl2 composites membrane for catalytic degradation and oil/water separation. Polym. Adv. Technol. 2019, 30, 101–119; https://doi.org/10.1002/pat.4448.Search in Google Scholar

42. Leo, C. P., Lee, W. P. C., Ahmad, A. L., Mohammad, A. W. Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Separ. Purif. Technol. 2012, 89, 51–56; https://doi.org/10.1016/j.seppur.2012.01.002.Search in Google Scholar

43. Balta, S., Sotto, A., Luis, P., Benea, L., Bruggen, B. V. D., Kim, J. A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO. J. Membr. Sci. 2012, 389, 155–161; https://doi.org/10.1016/j.memsci.2011.10.025.Search in Google Scholar

44. Karimi, A., Vatanpour, V., Khataee, A., Safarpour, M. Contra-diffusion synthesis of ZIF-8 layer on polyvinylidene fluoride ultrafiltration membranes for improved water purification. J. Ind. Eng. Chem. 2019, 73, 95–105; https://doi.org/10.1016/j.jiec.2019.01.010.Search in Google Scholar

45. Nakamura, T., Kubo, T. Tourmaline group crystals reaction with water. Ferroelectrics 1992, 137, 13–31; https://doi.org/10.1080/00150199208015933.Search in Google Scholar

46. Sun, S., Wei, C., Liu, Y. Characterization and water activation behavior of tourmaline nanoparticles. J. Nanosci. Nanotechnol. 2010, 10, 2119–2124; https://doi.org/10.1166/jnn.2010.2087.Search in Google Scholar

47. Ni, H., Li, L., Li, H. Tourmaline ceramic balls stimulate growth and metabolism of three fermentation microorganisms. World J. Microbiol. Biotechnol. 2008, 24, 725–731; https://doi.org/10.1007/s11274-007-9529-x.Search in Google Scholar

Received: 2020-02-16
Accepted: 2020-11-30
Published Online: 2021-03-19
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2020-0028/html
Scroll to top button