Skip to main content
Log in

Tissue Peculiarities of Energy Metabolism Enzyme Activity and ATP Content In Black Sea Ruff Scorpaena porcus (Scorpaenidae)

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The activities of cytosolic oxidoreductases (malate and lactate dehydrogenases) and the level of ATP production in the hypoxic resistive tissues of Scorpaena porcus Linnaeus, 1758 were studied. It was found that “oxyphilic” tissues (structures of the brain, gills) are pre-adapted to hypoxia, since under normal conditions they had high MDH activity and an increased MDH/LDH ratio, the value of which was 10 to 20 times higher than that in the liver and white muscles. Moreover, in the relatively “young” brain divisions (forebrain, diencephalon, midbrain) the aerobic pathway of carbohydrate metabolism predominated. The ATP content decreased in a line of examined tissues as follows: white muscles → liver → medulla oblongata → gills → forebrain, diencephalon and midbrain. The ATP level in white muscles was an order of magnitude higher than in “oxyphilic” tissues and it probably served for the provision of throwing strategy for hunting of bottom predator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Almeida-Val, V.M. and Hochachka, P.W., Air-breathing fishes: metabolic biochemistry of the first diving vertebrates, in Biochemistry and Molecular Biology of Fishes, Hochachka, P.W. and Mommsen, T., Eds., Amsterdam: Elsevier, 1995, vol. 5, pp. 45–55. https://doi.org/10.1016/S1873-0140(06)80029-9

    Book  Google Scholar 

  2. Almeida-Val, V.M., Farias, I.P., Silva, M.N., et al., Biochemical adjustments to hypoxia by Amazon cichlids, Braz. J. Med. Biol. Res., 1995, vol. 28, nos. 11–12, pp. 1257–1263.

    CAS  PubMed  Google Scholar 

  3. Daxboeck, C., Davie, P.S., Perry, S.F., and Randall, D.J., Oxygen uptake in a spontaneously ventilating, blood-perfused trout preparation, J. Exp. Biol., 1982, vol. 101, pp. 35–45.

    Article  Google Scholar 

  4. Emeretli, I.V., Dependence of the activity of enzymes involved into energy metabolism of the Black Sea fishes on temperature at different periods of a year, Vopr. Ikhtiol., 1994, vol. 34, no. 3, pp. 395–399.

    Google Scholar 

  5. Gray, I.E., Comparative study of the gill area of marine fishes, Biol. Bull., 1954, vol. 107, pp. 219–225.

    Article  Google Scholar 

  6. Hochachka, P.W. and Somero, G.N., Biochemical Strategies in Environmental Adaptation, Philadelphia: Saunders, 1973.

    Google Scholar 

  7. Hochachka, P.W. and Somero, G.N., Biochemical Adaptation: Mechanism and Process in Physiological Evolution, Oxford: Oxford Univ. Press, 2002.

    Google Scholar 

  8. Hochachka, P.W., Buck, L.T., Doll, C.J., and Land, S.C., Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 9493–9498. https://doi.org/10.1073/pnas.93.18.9493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holm-Hansen, O. and Booth, C.R., The measurement of adenosine triphosphate in the Ocean and its ecological significance, Limnol. Oceanogr., 1966, vol. 11. №. 4, pp. 510–519.

    Article  CAS  Google Scholar 

  10. Houlihan, D.F., Mathers, E.M., and Foster, A., Biochemical correlates of growth rate in fish, in Fish Ecophysiology, Rankin, J.C. and Jensen, F.B., Eds., London: Springer-Verlag, 1993, pp. 45–71.

    Google Scholar 

  11. Ip, Y.K. and Low, W.P., Lactate production in the gills of the mudskipper Periophthalmodon schlosseri exposed to hypoxia, J. Exp. Zool., 1990, vol. 253, no. 1, pp. 99–101. https://doi.org/10.1002/jez.1402530113

    Article  CAS  Google Scholar 

  12. Johansen, K. and Pettersson, K., Gill O2 consumption in a teleost fish, Gadus morhua, Respir. Physiol., 1981, vol. 44, pp. 277–284. https://doi.org/10.1016/0034-5687(81)90023-2

    Article  CAS  PubMed  Google Scholar 

  13. Kawal, H.G., Torres, J.J., Sidell, B.D., and Somero, G.N., Metabolic cold adaptation in Antarctic fishes: evidence from enzymatic activities of brain, Mar. Biol., 2002, vol. 140, pp. 279–286. https://doi.org/10.1007/s002270100695

    Article  Google Scholar 

  14. Klyashtorin, L.B., Vodnoe dykhanie i kislorodnye potrebnosti ryb (Aquatic Respiration and Oxygen Consumption by Fishes), Moscow: Legkaya Pishchevaya Prom-st’, 1982.

  15. Leibson, L. and Plisetskaya, E.M., Effect of insulin on blood sugar level and glycogen content in organs of some cyclostomes and fish, Gen. Comp. Endocrinol., 1968, vol. 11, no. 2, pp. 381–392. https://doi.org/10.1016/0016-6480(68)90095-6

    Article  CAS  PubMed  Google Scholar 

  16. Lushchak, V.I., Bahnjukova, T.V., and Storey, K.B., Effect of hypoxia on the activity and binding of glycolytic and associated enzymes in sea scorpion tissues, Braz. J. Med. Biol. Res., 1998, vol. 31, no. 8, pp. 1059–1067. https://doi.org/10.1590/s0100-879x1998000800005

    Article  CAS  PubMed  Google Scholar 

  17. Lutz, P.L., Mechanisms for anoxic survival in the vertebrate brain, Ann. Rev. Physiol., 1992, vol. 54, pp. 601–618. https://doi.org/10.1146/annurev.ph.54.030192.003125

    Article  CAS  Google Scholar 

  18. Mil’man, L.S., Yurovetskii, Yu.G., and Ermolaeva, L.P., Activity of key enzymes of hydrocarbon metabolism, in Metody biologii razvitiya (Practical Manual on Development Biology), Moscow: Nauka, 1974, pp. 346–364.

  19. Mommsen, T.P., Metabolism of the fish gill, in Fish Physiology, Vol. 10: Gills, Part B: Ion and Water Transfer, Hoar, W.S. and Randall, D.J., Eds., London: Academic, 1984a, pp. 203–238.

  20. Mommsen, T.P., Biochemical characterization of the rainbow trout gill, J. Comp. Physiol., 1984b, vol. 154, no. 2, pp. 191–198.

    Article  CAS  Google Scholar 

  21. Nilsson, G.E. and Östlund-Nilsson, S., Does size matter for hypoxia tolerance in fish? Biol. Rev., 2008, vol. 83, pp. 173–189. https://doi.org/10.1111/j.1469-185X.2008.00038.x

    Article  PubMed  Google Scholar 

  22. Ovchinnikova, S.I. and Timakova, L.I., Seasonal, sexual, and species-dependent features of bioenergetic state of white muscles of the cod and flounder, Vestn. Murmansk. Gos. Tekh. Univ., 2008, vol. 11, no. 3, pp. 432–437.

  23. Panepucci, L., Fernandes, M.N., Sanches, J.R., and Rantin, F.T., Changes in lactate dehydrogenase and malate dehydrogenase activities during hypoxia and after temperature acclimation in the armored fish, Rhinelepis strigosa (Siluriformes, Loricariidae), Rev. Bras. Biol., 2000, vol. 60, no. 2, pp. 353–360. https://doi.org/10.1590/s0034-71082000000200021

    Article  CAS  PubMed  Google Scholar 

  24. Payan, P., Girard, J.P., and Mayer-Gostan, N., Branchial ion movements in teleosts: the role of respiratory and chloride cells, in Fish Physiology, Vol. 10: Gills, Part B: Ion and Water Transfer, Hoar, W.S. and Randall, D.J., Eds., London: Academic, 1984, pp. 39–63. https://doi.org/10.1016/S1546-5098(08)60181-8

  25. Polakof, S. and Soengas, J.L., Involvement of lactate in glucose metabolism and glucosensing function in selected tissues of rainbow trout, J. Exp. Biol., 2008, vol. 211, pp. 1075–1086. https://doi.org/10.1242/jeb.014050

    Article  CAS  PubMed  Google Scholar 

  26. Polakof, S., Míguez, J.M., and Soengas, J.L., In vitro evidences for glucosensing capacity and mechanisms in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout, Am. J. Physiol.: Regul. Integr. Comp. Physiol., 2007, vol. 293, pp. R1410–R1420. https://doi.org/10.1152/ajpregu.00283.2007

    Article  CAS  Google Scholar 

  27. Polakof, S., Mommsen, T.P., and Soengas, J.L., Glucosensing and glucose homeostasis: from fish to mammals, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2011, vol. 160, pp. 123–149. https://doi.org/10.1016/j.cbpb.2011.07.006

    Article  CAS  Google Scholar 

  28. Sahin, C., Erbay, M., Kalayci, F., et al., Life-history traits of the black scorpionfish (Scorpaena porcus) in southeastern Black Sea, Turk. J. Fish. Aquat. Sci., 2019, vol. 19, no. 7, pp. 571–584. https://doi.org/10.4194/1303-2712-v19_7_04

    Article  Google Scholar 

  29. Shulman, G.E. and Love, R.M., The biochemical ecology of marine fishes, in Advances in Marine Biology, San Diego: Academic, 1999, vol. 36.

    Google Scholar 

  30. Silkin, Yu.A., Silkina, E.N., Chernyaeva, V.N., and Vasilets, V.E., Study of dimensional and morphological characteristics of erythrocytes in some Black Sea fish of different evolution position and ecological specialization, J. Ichthyol., 2019, vol. 59, no. 1, pp. 97–103. https://doi.org/10.1134/S0032945219010168

    Article  Google Scholar 

  31. Skorkowski, E.F., Mitochondrial malic enzyme from crustacean and fish muscle, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1988, vol. 90, pp. 19–24.

    Article  CAS  Google Scholar 

  32. Soengas, J.L. and Aldegunde, M., Energy metabolism of fish brain, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2002, vol. 131, no. 3, pp. 271–296. https://doi.org/10.1016/s1096-4959(02)00022-2

    Article  Google Scholar 

  33. Soldatov, A.A., Organ blood flow and vessels of microcirculatory bed in fish (review), J. Evol. Biochem. Physiol., 2006, vol. 42, no. 3, pp. 243–252. https://doi.org/10.1134/S002209300603001X

    Article  Google Scholar 

  34. Soldatov, A.A., Andreeva, A.Yu., Novitskaya, V.N., and Parfenova, I.A., Coupling of membrane and metabolic function in nucleated erythrocytes of Scorpaena porcus under hypoxia in vivo and in vitro, J. Evol. Biochem. Physiol., 2014, vol. 50, no. 5, pp. 409–415. https://doi.org/10.1134/S0022093014050056

    Article  CAS  Google Scholar 

  35. Sollid, J. and Nilsson, G.E., Plasticity of respiratory structures—adaptive remodeling of fish gills induced by ambient oxygen and temperature, Respir. Physiol. Neurobiol., 2006, vol. 154, pp. 241–251. https://doi.org/10.1016/j.resp.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  36. Tripathi, G. and Singh, H., Impact of alphamethrin on biochemical parameters of Channa punctatus, J. Environ. Biol., 2013, vol. 34, pp. 227–230.

    CAS  PubMed  Google Scholar 

  37. Trusevich, V.V., Phosphorous metabolism during floating of fishes, in Elementy fiziologii i biokhimii obshchego i aktivnogo obmena u ryb (Elements of Physiology and Biochemistry of General and Active Metabolism in Fishes), Kiev: Naukova Dumka, 1978, pp. 145–167.

  38. Tseng, Y.C., Liu, S.T., Hu, M.Y., et al., Brain functioning under acute hypothermic stress supported by dynamic monocarboxylate utilization and transport in ectothermic fish, Front. Zool., 2014, vol. 11, no. 53. https://doi.org/10.1186/s12983-014-0053-1

Download references

Funding

The study was carried out within the framework of state tasks no. 0828-2019-0003, 0828-2019-0005 and with the support of the Russian Foundation for Basic Research, project no. 20-44-920001 (data on oxyphilic tissues).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Soldatov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatov, A.A., Golovina, I.V., Kolesnikova, E.E. et al. Tissue Peculiarities of Energy Metabolism Enzyme Activity and ATP Content In Black Sea Ruff Scorpaena porcus (Scorpaenidae). J. Ichthyol. 61, 299–306 (2021). https://doi.org/10.1134/S0032945221010161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945221010161

Keywords:

Navigation