Skip to main content
Log in

On the Resistorless Realization of Simulated Tunable Floating Lossy Inductors with Voltage Differencing Buffered Amplifiers

  • THEORY OF RADIO CIRCUITS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Alternative circuit designs concerning the simulation of floating lossy inductors using voltage differencing buffered amplifiers (VDBAs) are described. The topologies proposed here require only three VDBAs and one capacitor to simulate a floating inductance with series and parallel resistance. The simulated equivalent elements, namely equivalent resistance (Req) and equivalent inductance (Leq) are electronically controllable through the external bias currents of the VDBAs. The VDBA non-idealities including transconductance inaccuracy and voltage transfer error on the performance of the circuits has been discussed in detail. To support the theoretical analysis and demonstrate the practical workability of the proposed synthetic inductors, PSPICE simulation and experimental test results are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. R. Senani, Electrocomp. Sci. Tech. 10, 7 (1982).

    Google Scholar 

  2. R. Senani, Electron. Lett. 16, 382 (1980).

    Article  Google Scholar 

  3. R. Senani, Electron. Lett. 24, 403 (1988).

    Article  Google Scholar 

  4. R. Senani and D. R. Bhaskar, Analog Integr. Circ. Sig. Process. 73, 981 (2012).

    Google Scholar 

  5. D. R. Bhaskar and R. Senani, Am. J. Electr. Electron. Eng. 3, 88 (2015).

    Google Scholar 

  6. W. Tangsrirat, IETE J. Res. 64, 446 (2019).

    Article  Google Scholar 

  7. E. Yuce, Analog Integr. Circ. Sig. Process. 58, 61 (2009).

    Google Scholar 

  8. M. A. Ibrahim, S. Minaei, E. Yuce, N. Herencsar, and J. Koton, Radioengineering 21, 3 (2012).

    Google Scholar 

  9. R. Sotner, J. Jerabek, and N. Herencsar, Radioengineering 22, 490 (2013).

    Google Scholar 

  10. A. Yesil, F. Kacar, and K. Gurkan, Int. J. Electron. Commun. (AEU) 68, 143 (2014).

    Article  Google Scholar 

  11. W. Tangsrirat, Rev. Roum. Sci. Techn.– Electrotechn. et Energ. 62, 72 (2017).

    Google Scholar 

  12. W. Tangsrirat and O. Channumsin, J. Commun. Tech. Electron. 64, 797 (2019).

    Article  Google Scholar 

  13. Linear Technology, 100 MHz Current Feedback Amplifier with DC Gain Control, LT1228 datasheet, (http://www.linear.com/product/LT1228).

Download references

ACKNOWLEDGMENTS

This work was supported by King Mongkut’s Institute of Technology Ladkrabang Research Fund (grant no. KREF046213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Tangsrirat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pukkalanun, T., Moonmuang, P. & Tangsrirat, W. On the Resistorless Realization of Simulated Tunable Floating Lossy Inductors with Voltage Differencing Buffered Amplifiers. J. Commun. Technol. Electron. 66, 439–450 (2021). https://doi.org/10.1134/S1064226921040100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921040100

Keywords:

Navigation