Skip to main content
Log in

The \(\infty \)-capacity and Faber–Krahn inequality on Grushin spaces

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we investigate the \(\infty \)-capacity and the Faber–Krahn inequality on the Grushin space \({\mathbb {G}}^n_\alpha \). On the one hand we show that the \(\infty \)-capacity equals the limit of the p-th root of the p-capacity as \(p\rightarrow \infty \) and give a simple geometric characterization in terms of the Carnot–Carathéodory distance, on the other hand we establish some basic properties for the \(\infty \)-capacity, \(\infty \)-eigenvalue and the Faber–Krahn inequality on the Grushin space \({\mathbb {G}}^n_\alpha \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bieske, T., Gong, J.: The \(p\)-Laplace equation on a class of Grushin-type planes. Proc. Am. Math. Soc. 12, 3585–3594 (2006)

    Article  Google Scholar 

  2. Bieske, T.: Fundamental solutions to the \(p\)-Laplace equation in a class of Grushin vector fields. Electron. J. Diffe. Equ. 84, 1–10 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Bieske, T.: Viscosity solutions on Grushin-type planes. Ill. J. Math. 46, 893–911 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Bieske, T.: Properties of infinite harmonic functions in Grushin-type space. Rocky Mt. J. Math. 39, 729–756 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bieske, T.: Lipschitz extensions on Grushin-type spaces. Michigan Math. J. 53, 3–31 (2005)

    Article  MathSciNet  Google Scholar 

  6. Capogna, L., Danielli, D., Garofalo, N.: Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations. Amer. J. Math. 6, 1153–1196 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  Google Scholar 

  8. Costea, Ş.: Sobolev capacity and Hausdorff measures in metric measure spaces. Ann. Acad. Sci. Fenn. Math. 34, 179–194 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Costea, Ş.: Besov capacity and Hausdorff measures in metric measure spaces. Publ. Mat. 53, 141–178 (2009)

    Article  MathSciNet  Google Scholar 

  10. Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  11. Crandall, M., Evans, L.C., Gariepy, R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Part. Differ. Equ. 13(2), 123–139 (2001)

    Article  MathSciNet  Google Scholar 

  12. Fausto, F., Enrico, V.: Geometric PDEs in the Grushin plane: weighted inequalities and flatness of level sets. In: Internal Mathematics, vol. 242. Springer, Berlin (1971)

  13. Franceschi, V., Monti, R.: Isoperimetric problem in \(H\)-type groups and Grushin spaces. Rev. Mat. Iberoamericana 32, 1227–1258 (2016)

    Article  MathSciNet  Google Scholar 

  14. Franchi, B., Lanconelli, E.: Une mértrique associée à une classe d’opérateurs elliptiques dérgénérés. In: Conference on Linear Partial and Pseudodifferential Operators, (Torino, 1982), Rend. Sem. Mat. Univ. Politec. Torino , Special Issue, pp. 105–114 (1983)

  15. Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49, 1081–1144 (1996)

    Article  Google Scholar 

  16. Garofalo, N., Marola, N.: Sharp capacity estimates for rings in metric spaces. Houston J. Math. 3, 681–695 (2010)

    MATH  Google Scholar 

  17. Gol’dshtein, V., Troyanov, M.: Capacities in metric spaces. Integral Equ. Oper. Theory 44, 212–242 (2002)

    Article  MathSciNet  Google Scholar 

  18. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145, 688 (2000)

    MATH  Google Scholar 

  19. Hakkarainen, H., Kinnunen, J.: The BV capacity in metric spaces. Manuscripta Math. 132, 51–73 (2010)

    Article  MathSciNet  Google Scholar 

  20. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev spaces on metric measure spaces. An approach based on upper gradients. In: New Mathematical Monographs, vol. 27. Cambridge University Press, Cambridge (2015)

  21. Jiang, R.J., Xiao, J., Yang, D.: Relative \(\infty \)-capacity and its affinization. Adv. Calc. Var. 11, 95–110 (2018)

    Article  MathSciNet  Google Scholar 

  22. Juutinen, P., Lindqvist, P., Manfredi, J.: The \(\infty \)-eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89–105 (1999)

    Article  MathSciNet  Google Scholar 

  23. Kinnunen, J., Martio, O.: The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn. Math. 21, 367–382 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Kinnunen, J., Korte, R., Shanmugalingam, N., Tuominen, H.: Lebesgue points and capacities via boxing inequality in metric spaces. Indiana Univ. Math. J. 57, 401–430 (2008)

    Article  MathSciNet  Google Scholar 

  25. Liu, Y., Xiao, J.: Functional capacities on the Grushin space \({G}^{n}_{\alpha }\). Ann. Mat. Pura Appl. 197(3), 673–702 (2018)

    Article  MathSciNet  Google Scholar 

  26. Meyerson, W.: The Grushin plane and quasiconformal Jacobians. arXiv:1112.0078

  27. Monti, R., Morbidelli, D.: Isoperimetric inequality in the Grushin plane. J. Geom. Anal. 14, 355–368 (2004)

    Article  MathSciNet  Google Scholar 

  28. Monti, R., Serra Cassano, F.: Surface measures in Carnot–Carathéodory spaces. Calc. Var. Part. Differ. Equ. 13, 339–376 (2001)

    Article  Google Scholar 

  29. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16, 243–279 (2000)

    Article  MathSciNet  Google Scholar 

  30. Wu, J.: Bi-Lipshitz embedding of Grushin plane in \({R}^3\). Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(14), 633–644 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors also would like to thank the referee for his valuable comments which improve the presentation of this article. Moreover, the second author is supported by the National Natural Science Foundation of China (No. 11671031, No. 11471018), the Fundamental Research Funds for the Central Universities (No. FRF-BR-17-004B), and Beijing Municipal Science and Technology Project (No. Z17111000220000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Liu, Y. The \(\infty \)-capacity and Faber–Krahn inequality on Grushin spaces. Monatsh Math 196, 135–162 (2021). https://doi.org/10.1007/s00605-021-01557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-021-01557-1

Keywords

Mathematics Subject Classification

Navigation