Skip to main content
Log in

GO System, a DNA Repair Pathway to Cope with Oxidative Damage

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The GO system is part of the DNA base excision repair pathway and is required for the error-free repair of 8-oxoguanine (oxoG), one of the most common oxidative DNA lesions. Due to the ability of oxoG to form oxoG:A mispairs, this base is highly mutagenic. Its repair requires the action of two enzymes: 8-oxoguanine DNA glycosylase (Fpg or MutM in bacteria and OGG1 in eukaryotes), which removes oxoG from oxoG:C pairs, and adenine DNA glycosylase (MutY in bacteria and MUTYH in eukaryotes), which removes A from oxoG:A mispairs to prevent mutations. The third enzyme of the system (MutT in bacteria and MTH1 or NUDT1 in eukaryotes) hydrolyzes 8-oxo-2′-deoxyguanosine triphosphate, thus preventing its incorporation into DNA. Recent data point to the proteins of the GO system as promising targets for the therapy of cancer, autoimmune diseases, and bacterial infections. This review highlights the structure and specificity of the GO system in bacteria and eukaryotes and its unique role in mutation avoidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Staerck C., Gastebois A., Vandeputte P., Calenda A., Larcher G., Gillmann L., Papon N., Bouchara J.-P., Fleury M.J.J. 2017. Microbial antioxidant defense enzymes. Microb. Pathog. 110, 56–65.

    Article  CAS  PubMed  Google Scholar 

  2. Zharkov D.O. 2008. Base excision DNA repair. Cell. Mol. Life Sci. 65, 1544–1565.

    Article  CAS  PubMed  Google Scholar 

  3. van Loon B., Markkanen E., Hübscher U. 2010. Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst.). 9, 604–616.

    Article  CAS  Google Scholar 

  4. Shibutani S., Takeshita M., Grollman A.P. 1991. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 349, 431–434.

    Article  CAS  PubMed  Google Scholar 

  5. Moriya M. 1993. Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-Oxoguanine in DNA induces targeted G ⋅ C→T ⋅ A transversions in simian kidney cells. Proc. Natl. Acad. Sci. U. S. A. 90, 1122–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Michaels M.L., Cruz C., Grollman A.P., Miller J.H. 1992. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc. Natl. Acad. Sci. U. S. A. 89, 7022–7025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Michaels M.L., Tchou J., Grollman A.P., Miller J.H. 1992. A repair system for 8-oxo-7,8-dihydrodeoxyguanine. Biochemistry. 31, 10964–10968.

    Article  CAS  PubMed  Google Scholar 

  8. Gad H., Koolmeister T., Jemth A.-S., Eshtad S., Jacques S.A., Ström C.E., Svensson L.M., Schultz N., Lundbäck T., Einarsdottir B.O., Saleh A., Göktürk C., Baranczewski P., Svensson R., Berntsson R.P.-A., et al. 2014. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature. 508, 215–221.

    Article  CAS  PubMed  Google Scholar 

  9. Huber K.V.M., Salah E., Radic B., Gridling M., Elkins J.M., Stukalov A., Jemth A.-S., Göktürk C., Sanjiv K., Strömberg K., Pham T., Warpman Berglund U., Colinge J., Bennett K.L., Loizou J.I., et al. 2014. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature. 508, 222–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Visnes T., Cázares-Körner A., Hao W., Wallner O., Masuyer G., Loseva O., Mortusewicz O., Wiita E., Sarno A., Manoilov A., Astorga-Wells J., Jemth A.-S., Pan L., Sanjiv K., Karsten S., et al. 2018. Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. Science. 362, 834–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 130, 797–810.

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen D., Joshi-Datar A., Lepine F., Bauerle E., Olakanmi O., Beer K., McKay G., Siehnel R., Schafhauser J., Wang Y., Britigan B.E., Singh P.K. 2011. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 334, 982–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Foti J.J., Devadoss B., Winkler J.A., Collins J.J., Walker G.C. 2012. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 336, 315–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tchou J., Kasai H., Shibutani S., Chung M.-H., Laval J., Grollman A.P., Nishimura S. 1991. 8-oxoguanine (8‑hydroxyguanine. DNA glycosylase and its substrate specificity. Proc. Natl. Acad. Sci. U. S. A. 88, 4690–4694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tchou J., Bodepudi V., Shibutani S., Antoshechkin I., Miller J., Grollman A.P., Johnson F. 1994. Substrate specificity of Fpg protein: Recognition and cleavage of oxidatively damaged DNA. J. Biol. Chem. 269, 15318–15324.

    Article  CAS  PubMed  Google Scholar 

  16. Karakaya A., Jaruga P., Bohr V.A., Grollman A.P., Dizdaroglu M. 1997. Kinetics of excision of purine lesions from DNA by Escherichia coli Fpg protein. Nucleic Acids Res. 25, 474–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bulychev N.V., Varaprasad C.V., Dormán G., Miller J.H., Eisenberg M., Grollman A.P., Johnson F. 1996. Substrate specificity of Escherichia coli MutY protein. Biochemistry. 35, 13147–13156.

    Article  CAS  PubMed  Google Scholar 

  18. Maki H., Sekiguchi M. 1992. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature. 355, 273–275.

    Article  CAS  PubMed  Google Scholar 

  19. Yudkina A.V., Shilkin E.S., Endutkin A.V., Makarova A.V., Zharkov D.O. 2019. Reading and misreading 8-oxoguanine, a paradigmatic ambiguous nucleobase. Crystals. 9, 269.

    Article  CAS  Google Scholar 

  20. Tajiri T., Maki H., Sekiguchi M. 1995. Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat. Res. 336, 257–267.

    Article  CAS  PubMed  Google Scholar 

  21. Foster P.L., Lee H., Popodi E., Townes J.P., Tang H. 2015. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc. Natl. Acad. Sci. U. S. A. 112, E5990–E5999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wielgoss S., Barrick J.E., Tenaillon O., Wiser M.J., Dittmar W.J., Cruveiller S., Chane-Woon-Ming B., Médigue C., Lenski R.E., Schneider D. 2013. Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc. Natl. Acad. Sci. U. S. A. 110, 222–227.

    Article  CAS  PubMed  Google Scholar 

  23. Schalow B.J., Courcelle C.T., Courcelle J. 2011. Escherichia coli Fpg glycosylase is nonrendundant and required for the rapid global repair of oxidized purine and pyrimidine damage in vivo. J. Mol. Biol. 410, 183–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Auffret van der Kemp P., Thomas D., Barbey R., de Oliveira R., Boiteux S. 1996. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc. Natl. Acad. Sci. U. S. A. 93, 5197–5202.

    Article  Google Scholar 

  25. Nash H.M., Bruner S.D., Schärer O.D., Kawate T., Addona T.A., Spooner E., Lane W.S., Verdine G.L. 1996. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 6, 968–980.

    Article  CAS  PubMed  Google Scholar 

  26. Rosenquist T.A., Zharkov D.O., Grollman A.P. 1997. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc. Natl. Acad. Sci. U. S. A. 94, 7429–7434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Radicella J.P., Dherin C., Desmaze C., Fox M.S., Boiteux S. 1997. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 94, 8010–8015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roldán-Arjona T., Wei Y.-F., Carter K.C., Klungland A., Anselmino C., Wang R.-P., Augustus M., Lindahl T. 1997. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl. Acad. Sci. U. S. A. 94, 8016–8020.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bjørås M., Luna L., Johnsen B., Hoff E., Haug T., Rognes T., Seeberg E. 1997. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J. 16, 6314–6322.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dherin C., Radicella J.P., Dizdaroglu M., Boiteux S. 1999. Excision of oxidatively damaged DNA bases by the human α-hOgg1 protein and the polymorphic α‑hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res. 27, 4001–4007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krishnamurthy N., Haraguchi K., Greenberg M.M., David S.S. 2008. Efficient removal of formamidopyrimidines by 8-oxoguanine glycosylases. Biochemistry. 47, 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  32. Klungland A., Rosewell I., Hollenbach S., Larsen E., Daly G., Epe B., Seeberg E., Lindahl T., Barnes D.E. 1999. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl. Acad. Sci. U. S. A. 96, 13300–13305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Minowa O., Arai T., Hirano M., Monden Y., Nakai S., Fukuda M., Itoh M., Takano H., Hippou Y., Aburatani H., Masumura K.-i., Nohmi T., Nishimura S., Noda T. 2000. Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice. Proc. Natl. Acad. Sci. U. S. A. 97, 4156–4161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakumi K., Tominaga Y., Furuichi M., Xu P., Tsuzuki T., Sekiguchi M., Nakabeppu Y. 2003. Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res. 63, 902–905.

    CAS  PubMed  Google Scholar 

  35. Jaruga P., Xiao Y., Vartanian V., Lloyd R.S., Dizdaroglu M. 2010. Evidence for the involvement of DNA repair enzyme NEIL1 in nucleotide excision repair of (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines. Biochemistry. 49, 1053–1055.

    Article  CAS  PubMed  Google Scholar 

  36. Sakumi K., Furuichi M., Tsuzuki T., Kakuma T., Kawabata S.-i., Maki H., Sekiguchi M. 1993. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J. Biol. Chem. 268, 23524–23530.

    Article  CAS  PubMed  Google Scholar 

  37. Slupska M.M., Baikalov C., Luther W.M., Chiang J.-H., Wei Y.-F., Miller J.H. 1996. Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J. Bacteriol. 178, 3885–3892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hayakawa H., Taketomi A., Sakumi K., Kuwano M., Sekiguchi M. 1995. Generation and elimination of 8‑oxo-7,8-dihydro-2′-deoxyguanosine 5′-triphosphate, a mutagenic substrate for DNA synthesis, in human cells. Biochemistry. 34, 89–95.

    Article  CAS  PubMed  Google Scholar 

  39. Pope M.A., David S.S. 2005. DNA damage recognition and repair by the murine MutY homologue. DNA Repair (Amst.). 4, 91–102.

    Article  CAS  Google Scholar 

  40. Kundu S., Brinkmeyer M.K., Livingston A.L., David S.S. 2009. Adenine removal activity and bacterial complementation with the human MutY homologue (MUTYH) and Y165C, G382D, P391L and Q324R variants associated with colorectal cancer. DNA Repair (Amst.). 8, 1400–1410.

    Article  CAS  Google Scholar 

  41. Russo M.T., De Luca G., Degan P., Parlanti E., Dogliotti E., Barnes D.E., Lindahl T., Yang H., Miller J.H., Bignami M. 2004. Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylases. Cancer Res. 64, 4411–4414.

    Article  CAS  PubMed  Google Scholar 

  42. Xie Y., Yang H., Cunanan C., Okamoto K., Shibata D., Pan J., Barnes D.E., Lindahl T., McIlhatton M., Fishel R., Miller J.H. 2004. Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors. Cancer Res. 64, 3096–3102.

    Article  CAS  PubMed  Google Scholar 

  43. Ohno M., Sakumi K., Fukumura R., Furuichi M., Iwasaki Y., Hokama M., Ikemura T., Tsuzuki T., Gondo Y., Nakabeppu Y. 2014. 8-Oxoguanine causes spontaneous de novo germline mutations in mice. Sci. Rep. 4, 4689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pilati C., Shinde J., Alexandrov L.B., Assié G., André T., Hélias-Rodzewicz Z., Ducoudray R., Le Corre D., Zucman-Rossi J., Emile J.-F., Bertherat J., Letouzé E., Laurent-Puig P. 2017. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas. J. Pathol. 242, 10–15.

    Article  CAS  PubMed  Google Scholar 

  45. Boiteux S., Coste F., Castaing B. 2017. Repair of 8‑oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic. Biol. Med. 107, 179–201.

    Article  CAS  PubMed  Google Scholar 

  46. Fromme J.C., Verdine G.L. 2003. DNA lesion recognition by the bacterial repair enzyme MutM. J. Biol. Chem. 278, 51543–51548.

    Article  CAS  PubMed  Google Scholar 

  47. Bruner S.D., Norman D.P.G., Verdine G.L. 2000. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature. 403, 859–866.

    Article  CAS  PubMed  Google Scholar 

  48. Fromme J.C., Banerjee A., Huang S.J., Verdine G.L. 2004. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature. 427, 652–656.

    Article  CAS  PubMed  Google Scholar 

  49. Nakamura T., Meshitsuka S., Kitagawa S., Abe N., Yamada J., Ishino T., Nakano H., Tsuzuki T., Doi T., Kobayashi Y., Fujii S., Sekiguchi M., Yamagata Y. 2010. Structural and dynamic features of the MutT protein in the recognition of nucleotides with the mutagenic 8-oxoguanine base. J. Biol. Chem. 285, 444–452.

    Article  CAS  PubMed  Google Scholar 

  50. Waz S., Nakamura T., Hirata K., Koga-Ogawa Y., Chirifu M., Arimori T., Tamada T., Ikemizu S., Nakabeppu Y., Yamagata Y. 2017. Structural and kinetic studies of the human Nudix hydrolase MTH1 reveal the mechanism for its broad substrate specificity. J. Biol. Chem. 292, 2785–2794.

    Article  CAS  PubMed  Google Scholar 

  51. Boon E.M., Pope M.A., Williams S.D., David S.S., Barton J.K. 2002. DNA-mediated charge transport as a probe of MutY/DNA interaction. Biochemistry. 41, 8464–8470.

    Article  CAS  PubMed  Google Scholar 

  52. Boon E.M., Livingston A.L., Chmiel N.H., David S.S., Barton J.K. 2003. DNA-mediated charge transport for DNA repair. Proc. Natl. Acad. Sci. U. S. A. 100, 12543–12547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boal A.K., Yavin E., Lukianova O.A., O’Shea V.L., David S.S., Barton J.K. 2005. DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters. Biochemistry. 44, 8397–8407.

    Article  CAS  PubMed  Google Scholar 

  54. Yavin E., Boal A.K., Stemp E.D.A., Boon E.M., Livingston A.L., O’Shea V.L., David S.S., Barton J.K. 2005. Protein–DNA charge transport: Redox activation of a DNA repair protein by guanine radical. Proc. Natl. Acad. Sci. U. S. A. 102, 3546–3551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yavin E., Stemp E.D.A., O’Shea V.L., David S.S., Barton J.K. 2006. Electron trap for DNA-bound repair enzymes: A strategy for DNA-mediated signaling. Proc. Natl. Acad. Sci. U. S. A. 103, 3610–3614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maga G., Villani G., Crespan E., Wimmer U., Ferrari E., Bertocci B., Hübscher U. 2007. 8-Oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature. 447, 606–608.

    Article  CAS  PubMed  Google Scholar 

  57. Fazlieva R., Spittle C.S., Morrissey D., Hayashi H., Yan H., Matsumoto Y. 2009. Proofreading exonuclease activity of human DNA polymerase δ and its effects on lesion-bypass DNA synthesis. Nucleic Acids Res. 37, 2854–2866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Locatelli G.A., Pospiech H., Tanguy Le Gac N., van Loon B., Hubscher U., Parkkinen S., Syväoja J.E., Villani G. 2010. Effect of 8-oxoguanine and abasic site DNA lesions on in vitro elongation by human DNA polymerase ε in the presence of replication protein A and proliferating-cell nuclear antigen. Biochem. J. 429, 573–582.

    Article  CAS  PubMed  Google Scholar 

  59. Markkanen E., Castrec B., Villani G., Hübscher U. 2012. A switch between DNA polymerases δ and λ promotes error-free bypass of 8-oxo-G lesions. Proc. Natl. Acad. Sci. U. S. A. 109, 20401–20406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Picher A.J., Blanco L. 2007. Human DNA polymerase lambda is a proficient extender of primer ends paired to 7,8-dihydro-8-oxoguanine. DNA Repair (Amst.). 6, 1749–1756.

    Article  CAS  Google Scholar 

  61. Burak M.J., Guja K.E., Hambardjieva E., Derkunt B., Garcia-Diaz M. 2016. A fidelity mechanism in DNA polymerase lambda promotes error-free bypass of 8‑oxo-dG. EMBO J. 35, 2045–2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. van Loon B., Hübscher U. 2009. An 8-oxo-guanine repair pathway coordinated by MUTYH glycosylase and DNA polymerase λ. Proc. Natl. Acad. Sci. U. S. A. 106, 18201–18206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cadet J., Davies K.J.A., Medeiros M.H.G., Di Mascio P., Wagner J.R. 2017. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic. Biol. Med. 107, 13–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fleming A.M., Burrows C.J. 2017. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic. Biol. Med. 107, 35–52.

    Article  CAS  PubMed  Google Scholar 

  65. Hailer M.K., Slade P.G., Martin B.D., Sugden K.D. 2005. Nei deficient Escherichia coli are sensitive to chromate and accumulate the oxidized guanine lesion spiroiminodihydantoin. Chem. Res. Toxicol. 18, 1378–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mangerich A., Knutson C.G., Parry N.M., Muthupa-lani S., Ye W., Prestwich E., Cui L., McFaline J.L., Mobley M., Ge Z., Taghizadeh K., Wishnok J.S., Wogan G.N., Fox J.G., Tannenbaum S.R., Dedon P.C. 2012. Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc. Natl. Acad. Sci. U. S. A. 109, E1820–E1829.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hu J., de Souza-Pinto N.C., Haraguchi K., Hogue B.A., Jaruga P., Greenberg M.M., Dizdaroglu M., Bohr V.A. 2005. Repair of formamidopyrimidines in DNA involves different glycosylases: Role of the OGG1, NTH1, and NEIL1 enzymes. J. Biol. Chem. 280, 40544–40551.

    Article  CAS  PubMed  Google Scholar 

  68. Dizdaroglu M. 2012. Oxidatively induced DNA damage: Mechanisms, repair and disease. Cancer Lett. 327, 26–47.

    Article  CAS  PubMed  Google Scholar 

  69. Wiederholt C.J., Greenberg M.M. 2002. Fapy ⋅ dG instructs Klenow exo to misincorporate deoxyadenosine. J. Am. Chem. Soc. 124, 7278–7279.

    Article  CAS  PubMed  Google Scholar 

  70. Kalam M.A., Haraguchi K., Chandani S., Loechler E.L., Moriya M., Greenberg M.M., Basu A.K. 2006. Genetic effects of oxidative DNA damages: Comparative mutagenesis of the imidazole ring-opened formamidopyrimidines (Fapy lesions) and 8-oxo-purines in simian kidney cells. Nucleic Acids Res. 34, 2305–2315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pande P., Haraguchi K., Jiang Y.-L., Greenberg M.M., Basu A.K. 2015. Unlike catalyzing error-free bypass of 8-oxodGuo, DNA polymerase λ is responsible for a significant part of Fapy ⋅ dG-induced G→T mutations in human cells. Biochemistry. 54, 1859–1862.

    Article  CAS  PubMed  Google Scholar 

  72. Patro J.N., Wiederholt C.J., Jiang Y.L., Delaney J.C., Essigmann J.M., Greenberg M.M. 2007. Studies on the replication of the ring opened formamidopyrimidine, Fapy ⋅ dG in Escherichia coli. Biochemistry. 46, 10202–10212.

    Article  CAS  PubMed  Google Scholar 

  73. Weledji Y.N., Wiederholt C.J., Delaney M.O., Greenberg M.M. 2008. DNA polymerase bypass in vitro and in E. coli of a C-nucleotide analogue of Fapy ⋅ dG. Bioorg. Med. Chem. 16, 4029–4034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Imoto S., Patro J.N., Jiang Y.L., Oka N., Greenberg M.M. 2006. Synthesis, DNA polymerase incorporation, and enzymatic phosphate hydrolysis of formamidopyrimidine nucleoside triphosphates. J. Am. Chem. Soc. 128, 14606–14611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boiteux S., Gajewski E., Laval J., Dizdaroglu M. 1992. Substrate specificity of the Escherichia coli Fpg protein (formamidopyrimidine-DNA glycosylase): Excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry. 31, 106–110.

    Article  CAS  PubMed  Google Scholar 

  76. Wiederholt C.J., Delaney M.O., Pope M.A., David S.S., Greenberg M.M. 2003. Repair of DNA containing Fapy ⋅ dG and its β-C-nucleoside analogue by formamidopyrimidine DNA glycosylase and MutY. Biochemistry. 42, 9755–9760.

    Article  CAS  PubMed  Google Scholar 

  77. Duarte V., Muller J.G., Burrows C.J. 1999. Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. Nucleic Acids Res. 27, 496–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kornyushyna O., Berges A.M., Muller J.G., Burrows C.J. 2002. In vitro nucleotide misinsertion opposite the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin and DNA synthesis past the lesions using Escherichia coli DNA polymerase I (Klenow fragment). Biochemistry. 41, 15304–15314.

    Article  CAS  PubMed  Google Scholar 

  79. Zhu J., Fleming A.M., Orendt A.M., Burrows C.J. 2016. pH-dependent equilibrium between 5-guanidinohydantoin and iminoallantoin affects nucleotide insertion opposite the DNA lesion. J. Org. Chem. 81, 351–359.

    Article  CAS  PubMed  Google Scholar 

  80. Beckman J., Wang M., Blaha G., Wang J., Konigsberg W.H. 2010. Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP and dGMP to be inserted opposite guanidinohydantoin. Biochemistry. 49, 8554–8563.

    Article  CAS  PubMed  Google Scholar 

  81. Henderson P.T., Delaney J.C., Muller J.G., Neeley W.L., Tannenbaum S.R., Burrows C.J., Essigmann J.M. 2003. The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. Biochemistry. 42, 9257–9262.

    Article  CAS  PubMed  Google Scholar 

  82. Delaney S., Delaney J.C., Essigmann J.M. 2007. Chemical-biological fingerprinting: Probing the properties of DNA lesions formed by peroxynitrite. Chem. Res. Toxicol. 20, 1718–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Neeley W.L., Delaney S., Alekseyev Y.O., Jarosz D.F., Delaney J.C., Walker G.C., Essigmann J.M. 2007. DNA polymerase V allows bypass of toxic guanine oxidation products in vivo. J. Biol. Chem. 282, 12741–12748.

    Article  CAS  PubMed  Google Scholar 

  84. Huang J., Yennie C.J., Delaney S. 2015. Klenow fragment discriminates against the incorporation of the hyperoxidized dGTP lesion spiroiminodihydantoin into DNA. Chem. Res. Toxicol. 28, 2325–2333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Leipold M.D., Muller J.G., Burrows C.J., David S.S. 2000. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG. Biochemistry. 39, 14984–14992.

    Article  CAS  PubMed  Google Scholar 

  86. Hazra T.K., Muller J.G., Manuel R.C., Burrows C.J., Lloyd R.S., Mitra S. 2001. Repair of hydantoins, one electron oxidation product of 8-oxoguanine, by DNA glycosylases of Escherichia coli. Nucleic Acids Res. 29, 1967–1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Krishnamurthy N., Muller J.G., Burrows C.J., David S.S. 2007. Unusual structural features of hydantoin lesions translate into efficient recognition by Escherichia coli Fpg. Biochemistry. 46, 9355–9365.

    Article  CAS  PubMed  Google Scholar 

  88. Delaney S., Neeley W.L., Delaney J.C., Essigmann J.M. 2007. The substrate specificity of MutY for hyperoxidized guanine lesions in vivo. Biochemistry. 46, 1448–1455.

    Article  CAS  PubMed  Google Scholar 

  89. Leipold M.D., Workman H., Muller J.G., Burrows C.J., David S.S. 2003. Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1, and yOGG2. Biochemistry. 42, 11373–11381.

    Article  CAS  PubMed  Google Scholar 

  90. Melamede R.J., Hatahet Z., Kow Y.W., Ide H., Wallace S.S. 1994. Isolation and characterization of endonuclease VIII from Escherichia coli. Biochemistry. 33, 1255–1264.

    Article  CAS  PubMed  Google Scholar 

  91. Jiang D., Hatahet Z., Melamede R.J., Kow Y.W., Wallace S.S. 1997. Characterization of Escherichia coli endonuclease VIII. J. Biol. Chem. 272, 32230–32239.

    Article  CAS  PubMed  Google Scholar 

  92. Dizdaroglu M., Burgess S.M., Jaruga P., Hazra T.K., Rodriguez H., Lloyd R.S. 2001. Substrate specificity and excision kinetics of Escherichia coli endonuclease VIII (Nei) for modified bases in DNA damaged by free radicals. Biochemistry. 40, 12150–12156.

    Article  CAS  PubMed  Google Scholar 

  93. Kropachev K.Y., Zharkov D.O., Grollman A.P. 2006. Catalytic mechanism of Escherichia coli endonuclease VIII: Roles of the intercalation loop and the zinc finger. Biochemistry. 45, 12039–12049.

    Article  CAS  PubMed  Google Scholar 

  94. Blaisdell J.O., Hatahet Z., Wallace S.S. 1999. A novel role for Escherichia coli endonuclease VIII in prevention of spontaneous G→T transversions. J. Bacteriol. 181, 6396–6402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hazra T.K., Izumi T., Venkataraman R., Kow Y.W., Dizdaroglu M., Mitra S. 2000. Characterization of a novel 8-oxoguanine-DNA glycosylase activity in Escherichia coli and identification of the enzyme as endonuclease VIII. J. Biol. Chem. 275, 27762–27767.

    Article  CAS  PubMed  Google Scholar 

  96. Hazra T.K., Izumi T., Boldogh I., Imhoff B., Kow Y.W., Jaruga P., Dizdaroglu M., Mitra S. 2002. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proc. Natl. Acad. Sci. U. S. A. 99, 3523–3528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hazra T.K., Kow Y.W., Hatahet Z., Imhoff B., Boldogh I., Mokkapati S.K., Mitra S., Izumi T. 2002. Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions. J. Biol. Chem. 277, 30417–30420.

    Article  CAS  PubMed  Google Scholar 

  98. Bandaru V., Sunkara S., Wallace S.S., Bond J.P. 2002. A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII. DNA Repair (Amst.). 1, 517–529.

    Article  CAS  Google Scholar 

  99. Morland I., Rolseth V., Luna L., Rognes T., Bjørås M., Seeberg E. 2002. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: An alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res. 30, 4926–4936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Takao M., Kanno S.-I., Kobayashi K., Zhang Q.-M., Yonei S., van der Horst G.T.J., Yasui A. 2002. A back-up glycosylase in Nth1 knock-out mice is a functional Nei (endonuclease VIII) homologue. J. Biol. Chem. 277, 42205–42213.

    Article  CAS  PubMed  Google Scholar 

  101. Rosenquist T.A., Zaika E., Fernandes A.S., Zharkov D.O., Miller H., Grollman A.P. 2003. The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death. DNA Repair (Amst.). 2, 581–591.

    Article  CAS  Google Scholar 

  102. Jaruga P., Birincioglu M., Rosenquist T.A., Dizdaroglu M. 2004. Mouse NEIL1 protein is specific for excision of 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine from oxidatively damaged DNA. Biochemistry. 43, 15909–15914.

    Article  CAS  PubMed  Google Scholar 

  103. Roy L.M., Jaruga P., Wood T.G., McCullough A.K., Dizdaroglu M., Lloyd R.S. 2007. Human polymorphic variants of the NEIL1 DNA glycosylase. J. Biol. Chem. 282, 15790–15798.

    Article  CAS  PubMed  Google Scholar 

  104. Muftuoglu M., de Souza-Pinto N.C., Dogan A., Aamann M., Stevnsner T., Rybanska I., Kirkali G., Dizdaroglu M., Bohr V.A. 2009. Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase. J. Biol. Chem. 284, 9270–9279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zou X., Owusu M., Harris R., Jackson S.P., Loizou J.I., Nik-Zainal S. 2018. Validating the concept of mutational signatures with isogenic cell models. Nat. Commun. 9, 1744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Chan M.K., Ocampo-Hafalla M.T., Vartanian V., Jaruga P., Kirkali G., Koenig K.L., Browng S., Lloyd R.S., Dizdaroglu M., Teebor G.W. 2009. Targeted deletion of the genes encoding NTH1 and NEIL1 DNA N-glycosylases reveals the existence of novel carcinogenic oxidative damage to DNA. DNA Repair (Amst.). 8, 786–794.

    Article  CAS  PubMed Central  Google Scholar 

  107. Hailer M.K., Slade P.G., Martin B.D., Rosenquist T.A., Sugden K.D. 2005. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. DNA Repair (Amst.). 4, 41–50.

    Article  CAS  Google Scholar 

  108. Krishnamurthy N., Zhao X., Burrows C.J., David S.S. 2008. Superior removal of hydantoin lesions relative to other oxidized bases by the human DNA glycosylase hNEIL1. Biochemistry. 47, 7137–7146.

    Article  CAS  PubMed  Google Scholar 

  109. Liu M., Bandaru V., Bond J.P., Jaruga P., Zhao X., Christov P.P., Burrows C.J., Rizzo C.J., Dizdaroglu M., Wallace S.S. 2010. The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proc. Natl Acad. Sci. U. S. A. 107, 4925–4930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yeo J., Goodman R.A., Schirle N.T., David S.S., Beal P.A. 2010. RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1. Proc. Natl. Acad. Sci. U. S. A. 107, 20715–20719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao X., Krishnamurthy N., Burrows C.J., David S.S. 2010. Mutation versus repair: NEIL1 removal of hydantoin lesions in single-stranded, bulge, bubble, and duplex DNA contexts. Biochemistry. 49, 1658–1666.

    Article  CAS  PubMed  Google Scholar 

  112. Redrejo-Rodríguez M., Saint-Pierre C., Couve S., Mazouzi A., Ishchenko A.A., Gasparutto D., Saparbaev M. 2011. New insights in the removal of the hydantoins, oxidation product of pyrimidines, via the base excision and nucleotide incision repair pathways. PLoS One. 6, e21039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Liu M., Bandaru V., Holmes A., Averill A.M., Cannan W., Wallace S.S. 2012. Expression and purification of active mouse and human NEIL3 proteins. Protein Expr. Purif. 84, 130–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Krokeide S.Z., Laerdahl J.K., Salah M., Luna L., Cederkvist F.H., Fleming A.M., Burrows C.J., Dalhus B., Bjørås M. 2013. Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin. DNA Repair (Amst.). 12, 1159–1164.

    Article  CAS  Google Scholar 

  115. McKibbin P.L., Fleming A.M., Towheed M.A., van Houten B., Burrows C.J., David S.S. 2013. Repair of hydantoin lesions and their amine adducts in DNA by base and nucleotide excision repair. J. Am. Chem. Soc. 135, 13851–13861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ohtsubo T., Matsuda O., Iba K., Terashima I., Sekiguchi M., Nakabeppu Y. 1998. Molecular cloning of AtMMH, an Arabidopsis thaliana ortholog of the Escherichia coli mutM gene, and analysis of functional domains of its product. Mol. Gen. Genet. 259, 577–590.

    Article  CAS  PubMed  Google Scholar 

  117. Dany A.L., Tissier A. 2001. A functional OGG1 homologue from Arabidopsis thaliana. Mol. Genet. Genomics. 265, 293–301.

    Article  CAS  PubMed  Google Scholar 

  118. García-Ortiz M.-V., Ariza R.R., Roldán-Arjona T. 2001. An OGG1 orthologue encoding a functional 8-oxoguanine DNA glycosylase/lyase in Arabidopsis thaliana. Plant Mol. Biol. 47, 795–804.

    Article  PubMed  Google Scholar 

  119. Morales-Ruiz T., Birincioglu M., Jaruga P., Rodriguez H., Roldan-Arjona T., Dizdaroglu M. 2003. Arabidopsis thaliana Ogg1 protein excises 8-hydroxyguanine and 2,6-diamino-4-hydroxy-5-formamidopyrimidine from oxidatively damaged DNA containing multiple lesions. Biochemistry. 42, 3089–3095.

    Article  CAS  PubMed  Google Scholar 

  120. Córdoba-Cañero D., Roldán-Arjona T., Ariza R.R. 2014. Arabidopsis ZDP DNA 3′-phosphatase and ARP endonuclease function in 8-oxoG repair initiated by FPG and OGG1 DNA glycosylases. Plant J. 79, 824–834.

    Article  PubMed  CAS  Google Scholar 

  121. Murphy T.M., Guo Y.-Y. 2010. Antimutagenic specificities of two plant glycosylases, oxoguanine glycosylase and formamidopyrimidine glycosylase, assayed in vivo. Biochem. Biophys. Res. Commun. 392, 335–339.

    Article  CAS  PubMed  Google Scholar 

  122. Murphy T.M., George A. 2005. A comparison of two DNA base excision repair glycosylases from Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 329, 869–872.

    Article  CAS  PubMed  Google Scholar 

  123. Kathe S.D., Barrantes-Reynolds R., Jaruga P., Newton M.R., Burrows C.J., Bandaru V., Dizdaroglu M., Bond J.P., Wallace S.S. 2009. Plant and fungal Fpg homologs are formamidopyrimidine DNA glycosylases but not 8-oxoguanine DNA glycosylases. DNA Repair (Amst.). 8, 643–653.

    Article  CAS  Google Scholar 

  124. Duclos S., Aller P., Jaruga P., Dizdaroglu M., Wallace S.S., Doublié S. 2012. Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine. DNA Repair (Amst.). 11, 714–725.

    Article  CAS  PubMed Central  Google Scholar 

  125. Yoshimura K., Ogawa T., Ueda Y., Shigeoka S. 2007. AtNUDX1, an 8-oxo-7,8-dihydro-2′-deoxyguanosine 5′-triphosphate pyrophosphohydrolase, is responsible for eliminating oxidized nucleotides in Arabidopsis. Plant Cell Physiol. 48, 1438–1449.

    Article  CAS  PubMed  Google Scholar 

  126. Duwat P., de Oliveira R., Ehrlich S.D., Boiteux S. 1995. Repair of oxidative DNA damage in Gram-positive bacteria: The Lactococcus lactis Fpg protein. Microbiology. 141, 411–417.

    Article  CAS  PubMed  Google Scholar 

  127. Castaing B., Fourrey J.-L., Hervouet N., Thomas M., Boiteux S., Zelwer C. 1999. AP site structural determinants for Fpg specific recognition. Nucleic Acids Res. 27, 608–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Serre L., Pereira de Jésus K., Boiteux S., Zelwer C., Castaing B. 2002. Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. EMBO J. 21, 2854–2865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pereira de Jésus K., Serre L., Zelwer C., Castaing B. 2005. Structural insights into abasic site for Fpg specific binding and catalysis: Comparative high-resolution crystallographic studies of Fpg bound to various models of abasic site analogues-containing DNA. Nucleic Acids Res. 33, 5936–5944.

    Article  PubMed  CAS  Google Scholar 

  130. Suzuki M., Matsui K., Yamada M., Kasai H., Sofuni T., Nohmi T. 1997. Construction of mutants of Salmonella typhimurium deficient in 8-hydroxyguanine DNA glycosylase and their sensitivities to oxidative mutagens and nitro compounds. Mutat. Res. 393, 233–246.

    Article  CAS  PubMed  Google Scholar 

  131. Mikawa T., Kato R., Sugahara M., Kuramitsu S. 1998. Thermostable repair enzyme for oxidative DNA damage from extremely thermophilic bacterium, Thermus thermophilus HB8. Nucleic Acids Res. 26, 903–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sugahara M., Mikawa T., Kumasaka T., Yamamoto M., Kato R., Fukuyama K., Inoue Y., Kuramitsu S. 2000. Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilus HB8. EMBO J. 19, 3857–3869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sentürker S., Bauche C., Laval J., Dizdaroglu M. 1999. Substrate specificity of Deinococcus radiodurans Fpg protein. Biochemistry. 38, 9435–9439.

    Article  PubMed  Google Scholar 

  134. Fromme J.C., Verdine G.L. 2002. Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM. Nat. Struct. Biol. 9, 544–552.

    CAS  PubMed  Google Scholar 

  135. Qi Y., Spong M.C., Nam K., Banerjee A., Jiralerspong S., Karplus M., Verdine G.L. 2009. Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme. Nature. 462, 762–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sung R.-J., Zhang M., Qi Y., Verdine G.L. 2012. Sequence-dependent structural variation in DNA undergoing intrahelical inspection by the DNA glycosylase MutM. J. Biol. Chem. 287, 18044–18054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sung R.-J., Zhang M., Qi Y., Verdine G.L. 2013. Structural and biochemical analysis of DNA helix invasion by the bacterial 8-oxoguanine DNA glycosylase MutM. J. Biol. Chem. 288, 10012–10023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nagorska K., Silhan J., Li Y., Pelicic V., Freemont P.S., Baldwin G.S., Tang C.M. 2012. A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis. Mol. Microbiol. 83, 1064–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Souza Arantes L., Gonçalves Vila Nova L., Resende B.C., Bitar M., Vale Coelho I.E., Miyoshi A., Azevedo V.A., dos Santos L.L., Machado C.R., de Oliveira Lopes D. 2016. The Corynebacterium pseudotuberculosis genome contains two formamidopyrimidine-DNA glycosylase enzymes, only one of which recognizes and excises 8-oxoguanine lesion. Gene. 575, 233–243.

    Article  CAS  Google Scholar 

  140. Davidsen T., Bjørås M., Seeberg E.C., Tønjum T. 2005. Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species. J. Bacteriol. 187, 2801–2809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Eutsey R., Wang G., Maier R.J. 2007. Role of a MutY DNA glycosylase in combating oxidative DNA damage in Helicobacter pylori. DNA Repair (Amst.). 6, 19–26.

    Article  CAS  PubMed  Google Scholar 

  142. Robles A.G., Reid K., Roy F., Fletcher H.M. 2011. Porphyromonas gingivalis mutY is involved in the repair of oxidative stress-induced DNA mispairing. Mol. Oral Microbiol. 26, 175–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Eberle R.J., Coronado M.A., Caruso I.P., Lopes D.O., Miyoshi A., Azevedo V., Arni R.K. 2015. Chemical and thermal influence of the [4Fe–4S]2+ cluster of A/G-specific adenine glycosylase from Corynebacterium pseudotuberculosis. Biochim. Biophys. Acta. 1850, 393–400.

    Article  CAS  PubMed  Google Scholar 

  144. Cançado de Faria R., Gonçalves Vila-Nova L., Bitar M., Carvalho Resende B., Sousa Arantes L., Basso Rebelato A., Carvalho Azevedo V.A., Franco G.R., Machado C.R., dos Santos L.L., de Oliveira Lopes D. 2016. Adenine glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro. Infect. Genet. Evol. 44, 318–329.

    Article  CAS  Google Scholar 

  145. Dos Vultos T., Blázquez J., Rauzier J., Matic I., Gicquel B. 2006. Identification of Nudix hydrolase family members with an antimutator role in Mycobacterium tuberculosis and Mycobacterium smegmatis. J. Bacteriol. 188, 3159–3161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Patil A.G.G., Sang P.B., Govindan A., Varshney U. 2013. Mycobacterium tuberculosis MutT1 (Rv2985) and ADPRase (Rv1700) proteins constitute a two-stage mechanism of 8-oxo-dGTP and 8-oxo-GTP detoxification and adenosine to cytidine mutation avoidance. J. Biol. Chem. 288, 11252–11262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Arif S.M., Patil A.G., Varshney U., Vijayan M. 2017. Biochemical and structural studies of Mycobacterium smegmatis MutT1, a sanitization enzyme with unusual modes of association. Acta Crystallogr. D Struct. Biol. 73, 349–364.

    Article  CAS  PubMed  Google Scholar 

  148. Sasaki M., Yonemura Y., Kurusu Y. 2000. Genetic analysis of Bacillus subtilis mutator genes. J. Gen. Appl. Microbiol. 46, 183–187.

    Article  CAS  PubMed  Google Scholar 

  149. Castellanos-Juárez F.X., Álvarez-Álvarez C., Yasbin R.E., Setlow B., Setlow P., Pedraza-Reyes M. 2006. YtkD and MutT protect vegetative cells but not spores of Bacillus subtilis from oxidative stress. J. Bacteriol. 188, 2285–2289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Vidales L.E., Cárdenas L.C., Robleto E., Yasbin R.E., Pedraza-Reyes M. 2009. Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis. J. Bacteriol. 191, 506–513.

    Article  CAS  PubMed  Google Scholar 

  151. Lian K., Leiros H.-K.S., Moe E. 2015. MutT from the fish pathogen Aliivibrio salmonicida is a cold-active nucleotide-pool sanitization enzyme with unexpectedly high thermostability. FEBS Open Bio. 5, 107–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Santos-Escobar F., Gutiérrez-Corona J.F., Pedraza-Reyes M. 2014. Role of Bacillus subtilis error prevention oxidized guanine system in counteracting hexavalent chromium-promoted oxidative DNA damage. Appl. Environ. Microbiol. 80, 5493–5502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Oliver A., Sánchez J.M., Blázquez J. 2002. Characterization of the GO system of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 217, 31–35.

    Article  CAS  PubMed  Google Scholar 

  154. Sanders L.H., Sudhakaran J., Sutton M.D. 2009. The GO system prevents ROS-induced mutagenesis and killing in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 294, 89–96.

    Article  CAS  PubMed  Google Scholar 

  155. Davidsen T., Amundsen E.K., Rødland E.A., Tønjum T. 2007. DNA repair profiles of disease-associated isolates of Neisseria meningitidis. FEMS Immunol. Med. Microbiol. 49, 243–251.

    Article  CAS  PubMed  Google Scholar 

  156. Davidsen T., Tuven H.K., Bjørås M., Rødland E.A., Tønjum T. 2007. Genetic interactions of DNA repair pathways in the pathogen Neisseria meningitidis. J. Bacteriol. 189, 5728–5737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Canfield G.S., Schwingel J.M., Foley M.H., Vore K.L., Boonanantanasarn K., Gill A.L., Sutton M.D., Gill S.R. 2013. Evolution in fast forward: A potential role for mutators in accelerating Staphylococcus aureus pathoadaptation. J. Bacteriol. 195, 615–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Martins-Pinheiro M., Oliveira A.R., Valencia A.O., Fernandez-Silva F.S., Silva L.G., Lopes-Kulishev C.O., Italiani V.C.S., Marques M.V., Menck C.F., Galhardo R.S. 2017. Molecular characterization of Caulobacter crescentus mutator strains. Gene. 626, 251–257.

    Article  CAS  PubMed  Google Scholar 

  159. Fernández-Silva F.S., Schulz M.L., Alves I.R., Freitas R.R., Paes da Rocha R., Lopes-Kulishev C.O., Medeiros M.H.G., Galhardo R.S. 2020. Contribution of GO system glycosylases to mutation prevention in Caulobacter crescentus. Environ. Mol. Mutagen. 61, 246–255.

    Article  PubMed  CAS  Google Scholar 

  160. Cole S.T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S.V., Eiglmeier K., Gas S., Barry C.E., III, Tekaia F., Badcock K., Basham D., Brown D., Chillingworth T., et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 393, 537–544.

    Article  CAS  PubMed  Google Scholar 

  161. Jain R., Kumar P., Varshney U. 2007. A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria. DNA Repair (Amst.). 6, 1774–1785.

    Article  CAS  Google Scholar 

  162. Sidorenko V.S., Rot M.A., Filipenko M.L., Nevinsky G.A., Zharkov D.O. 2008. Novel DNA glycosylases from Mycobacterium tuberculosis. Biochemistry (Moscow). 73 (4), 442–450.

    CAS  PubMed  Google Scholar 

  163. Kurthkoti K., Srinath T., Kumar P., Malshetty V.S., Sang P.B., Jain R., Manjunath R., Varshney U. 2010. A distinct physiological role of MutY in mutation prevention in mycobacteria. Microbiology. 156, 88–93.

    Article  CAS  PubMed  Google Scholar 

  164. Kurthkoti K., Varshney U. 2011. Base excision and nucleotide excision repair pathways in mycobacteria. Tuberculosis. 91, 533–543.

    Article  CAS  PubMed  Google Scholar 

  165. Kurthkoti K., Varshney U. 2012. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth. Mech. Ageing Dev. 133, 138–146.

    Article  CAS  PubMed  Google Scholar 

  166. Hassim F., Papadopoulos A.O., Kana B.D., Gordhan B.G. 2015. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis. Mutat. Res. 779, 24–32.

    Article  CAS  PubMed  Google Scholar 

  167. Kurthkoti K., Kumar P., Jain R., Varshney U. 2008. Important role of the nucleotide excision repair pathway in Mycobacterium smegmatis in conferring protection against commonly encountered DNA-damaging agents. Microbiology. 154, 2776–2785.

    Article  CAS  PubMed  Google Scholar 

  168. Mestre O., Hurtado-Ortiz R., Dos Vultos T., Namouchi A., Cimino M., Pimentel M., Neyrolles O., Gicquel B. 2013. High throughput phenotypic selection of Mycobacterium tuberculosis mutants with impaired resistance to reactive oxygen species identifies genes important for intracellular growth. PLoS One. 8, e53486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Olsen I., Balasingham S.V., Davidsen T., Debebe E., Rødland E.A., van Soolingen D., Kremer K., Alseth I., Tønjum T. 2009. Characterization of the major formamidopyrimidine-DNA glycosylase homolog in Mycobacterium tuberculosis and its linkage to variable tandem repeats. FEMS Immunol. Med. Microbiol. 56, 151–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Guo Y., Bandaru V., Jaruga P., Zhao X., Burrows C.J., Iwai S., Dizdaroglu M., Bond J.P., Wallace S.S. 2010. The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair (Amst.). 9, 177–190.

    Article  CAS  Google Scholar 

  171. Kinoshita-Daitoku R., Kiga K., Sanada T., Ogura Y., Bo Z., Iida T., Yokomori R., Kuroda E., Tanaka M., Sood A., Suzuki T., Nakai K., Hayashi T., Mimuro H. 2020. Mutational diversity in mutY-deficient Helicobacter pylori and its effect on adaptation to the gastric environment. Biochem. Biophys. Res. Commun. 525, 806–811.

    Article  CAS  PubMed  Google Scholar 

  172. Eskra L., Canavessi A., Carey M., Splitter G. 2001. Brucella abortus genes identified following constitutive growth and macrophage infection. Infect. Immun. 69, 7736–7742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Baharoglu Z., Krin E., Mazel D. 2013. RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae. PLoS Genet. 9, e1003421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Dupuy P., Howlader M., Glickman M.S. 2020. A multilayered repair system protects the mycobacterial chromosome from endogenous and antibiotic-induced oxidative damage. Proc. Natl. Acad. Sci. U. S. A. 117, 19517–19527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Oliver A., Cantón R., Campo P., Baquero F., Blázquez J. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 288, 1251–1253.

    Article  CAS  PubMed  Google Scholar 

  176. Mandsberg L.F., Ciofu O., Kirkby N., Christiansen L.E., Poulsen H.E., Høiby N. 2009. Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob. Agents Chemother. 53, 2483–2491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Morero N.R., Argaraña C.E. 2009. Pseudomonas aeruginosa deficient in 8-oxodeoxyguanine repair system shows a high frequency of resistance to ciprofloxacin. FEMS Microbiol. Lett. 290, 217–226.

    Article  CAS  PubMed  Google Scholar 

  178. Mandsberg L.F., Maciá M.D., Bergmann K.R., Christiansen L.E., Alhede M., Kirkby N., Høiby N., Oliver A., Ciofu O. 2011. Development of antibiotic resistance and up-regulation of the antimutator gene pfpI in mutator Pseudomonas aeruginosa due to inactivation of two DNA oxidative repair genes (mutY, mutM). FEMS Microbiol. Lett. 324, 28–37.

    Article  CAS  PubMed  Google Scholar 

  179. Couce A., Alonso-Rodriguez N., Costas C., Oliver A., Blázquez J. 2016. Intrapopulation variability in mutator prevalence among urinary tract infection isolates of Escherichia coli. Clin. Microbiol. Infect. 22, 566.

    Article  PubMed  Google Scholar 

  180. Perrin A., Larsonneur E., Nicholson A.C., Edwards D.J., Gundlach K.M., Whitney A.M., Gulvik C.A., Bell M.E., Rendueles O., Cury J., Hugon P., Clermont D., Enouf V., Loparev V., Juieng P., et al. 2017. Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat. Commun. 8, 15483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bridges B.A. 1995. mutY ‘directs’ mutation? Nature. 375, 741.

    Article  CAS  PubMed  Google Scholar 

  182. Bridges B.A., Timms A.R. 1997. Mutation in Escherichia coli under starvation conditions: A new pathway leading to small deletions in strains defective in mismatch correction. EMBO J. 16, 3349–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Notley-McRobb L., Pinto R., Seeto S., Ferenci T. 2002. Regulation of mutY and nature of mutator mutations in Escherichia coli populations under nutrient limitation. J. Bacteriol. 184, 739–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Raynes Y., Sniegowski P.D. 2014. Experimental evolution and the dynamics of genomic mutation rate modifiers. Heredity. 113, 375–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Couce A., Tenaillon O. 2019. Mutation bias and GC content shape antimutator invasions. Nat. Commun. 10, 3114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Lu A.-L., Fawcett W.P. 1998. Characterization of the recombinant MutY homolog, an adenine DNA glycosylase, from yeast Schizosaccharomyces pombe. J. Biol. Chem. 273, 25098–25105.

    Article  CAS  PubMed  Google Scholar 

  187. Chang D.-Y., Lu A.-L. 2002. Functional interaction of MutY homolog with proliferating cell nuclear antigen in fission yeast, Schizosaccharomyces pombe. J. Biol. Chem. 277, 11853–11858.

    Article  CAS  PubMed  Google Scholar 

  188. Chang D.-Y., Lu A.-L. 2005. Interaction of checkpoint proteins Hus1/Rad1/Rad9 with DNA base excision repair enzyme MutY homolog in fission yeast, Schizosaccharomyces pombe. J. Biol. Chem. 280, 408–417.

    Article  CAS  PubMed  Google Scholar 

  189. Girard P.-M., Guibourt N., Boiteux S. 1997. The Ogg1 protein of Saccharomyces cerevisiae: A 7,8-dihydro-8-oxoguanine DNA glycosylase/AP lyase whose lysine 241 is a critical residue for catalytic activity. Nucleic Acids Res. 25, 3204–3211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Karahalil B., Girard P.-M., Boiteux S., Dizdaroglu M. 1998. Substrate specificity of the Ogg1 protein of Saccharomyces cerevisiae: excision of guanine lesions produced in DNA by ionizing radiation- or hydrogen peroxide/metal ion-generated free radicals. Nucleic Acids Res. 26, 1228–1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Thomas D., Scot A.D., Barbey R., Padula M., Boiteux S. 1997. Inactivation of OGG1 increases the incidence of G ⋅ C→T ⋅ A transversions in Saccharomyces cerevisiae: Evidence for endogenous oxidative damage in DNA in eukaryotic cells. Mol. Gen. Genet. 254, 171–178.

    Article  CAS  PubMed  Google Scholar 

  192. Guibourt N., Boiteux S. 2000. Expression of the Fpg protein of Escherichia coli in Saccharomyces cerevisiae: Effects on spontaneous mutagenesis and sensitivity to oxidative DNA damage. Biochimie. 82, 59–64.

    Article  CAS  PubMed  Google Scholar 

  193. Scott A.D., Neishabury M., Jones D.H., Reed S.H., Boiteux S., Waters R. 1999. Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae. Yeast. 15, 205–218.

    Article  CAS  PubMed  Google Scholar 

  194. Ni T.T., Marsischky G.T., Kolodner R.D. 1999. MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol. Cell. 4, 439–444.

    Article  CAS  PubMed  Google Scholar 

  195. Shockley A.H., Doo D.W., Rodriguez G.P., Crouse G.F. 2013. Oxidative damage and mutagenesis in Saccharomyces cerevisiae: Genetic studies of pathways affecting replication fidelity of 8-oxoguanine. Genetics. 195, 359–367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Earley M.C., Crouse G.F. 1998. The role of mismatch repair in the prevention of base pair mutations in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 95, 15487–15491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Pavlov Y.I., Mian I.M., Kunkel T.A. 2003. Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast. Curr. Biol. 13, 744–748.

    Article  CAS  PubMed  Google Scholar 

  198. Haracska L., Yu S.-L., Johnson R.E., Prakash L., Prakash S. 2000. Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase η. Nat. Genet. 25, 458–461.

    Article  CAS  PubMed  Google Scholar 

  199. de Padula M., Slezak G., Auffret van Der Kemp P., Boiteux S. 2004. The post-replication repair RAD18 and RAD6 genes are involved in the prevention of spontaneous mutations caused by 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae. Nucleic Acids Res. 32, 5003–5010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yung C.-W., Okugawa Y., Otsuka C., Okamoto K., Arimoto S., Loakes D., Negishi K., Negishi T. 2008. Influence of neighbouring base sequences on the mutagenesis induced by 7,8-dihydro-8-oxoguanine in yeast. Mutagenesis. 23, 509–513.

    Article  CAS  PubMed  Google Scholar 

  201. Auffret van der Kemp P., de Padula M., Burguiere-Slezak G., Ulrich H.D., Boiteux S. 2009. PCNA monoubiquitylation and DNA polymerase η ubiquitin-binding domain are required to prevent 8-oxoguanine-induced mutagenesis in Saccharomyces cerevisiae. Nucleic Acids Res. 37, 2549–2559.

    Article  CAS  Google Scholar 

  202. Kaniak A., Dzierzbicki P., Rogowska A.T., Malc E., Fikus M., Ciesla Z. 2009. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae. DNA Repair (Amst.). 8, 318–329.

    Article  CAS  Google Scholar 

  203. Bruner S.D., Nash H.M., Lane W.S., Verdine G.L. 1998. Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Curr. Biol. 8, 393–403.

    Article  CAS  PubMed  Google Scholar 

  204. Sentürker S., Dizdaroglu M., Auffret van der Kemp P., You H.J., Doetsch P.W., Boiteux S. 1998. Substrate specificities of the Ntg1 and Ntg2 proteins of Saccharomyces cerevisiae for oxidized DNA bases are not identical. Nucleic Acids Res. 26, 5270–5276.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Eide L., Bjørås M., Pirovano M., Alseth I., Berdal K.G., Seeberg E. 1996. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 93, 10735–10740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. You H.J., Swanson R.L., Doetsch P.W. 1998. Saccharomyces cerevisiae possesses two functional homologues of Escherichia coli endonuclease III. Biochemistry. 37, 6033–6040.

    Article  CAS  PubMed  Google Scholar 

  207. You H.J., Swanson R.L., Harrington C., Corbett A.H., Jinks-Robertson S., Sentürker S., Wallace S.S., Boiteux S., Dizdaroglu M., Doetsch P.W. 1999. Saccharomyces cerevisiae Ntg1p and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria. Biochemistry. 38, 11298–11306.

    Article  CAS  PubMed  Google Scholar 

  208. Ishchenko A.A., Yang X., Ramotar D., Saparbaev M. 2005. The 3′ → 5′ exonuclease of Apn1 provides an alternative pathway to repair 7,8-dihydro-8-oxodeoxyguanosine in Saccharomyces cerevisiae. Mol. Cell. Biol. 25, 6380–6390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Mazurek A., Berardini M., Fishel R. 2002. Activation of human MutS homologs by 8-oxo-guanine DNA damage. J. Biol. Chem. 277, 8260–8266.

    Article  CAS  PubMed  Google Scholar 

  210. Larson E.D., Iams K., Drummond J.T. 2003. Strand-specific processing of 8-oxoguanine by the human mismatch repair pathway: inefficient removal of 8-oxoguanine paired with adenine or cytosine. DNA Repair (Amst.). 2, 1199–1210.

    Article  CAS  Google Scholar 

  211. Macpherson P., Barone F., Maga G., Mazzei F., Karran P., Bignami M. 2005. 8-Oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSα. Nucleic Acids Res. 33, 5094–5105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Pitsikas P., Lee D., Rainbow A.J. 2007. Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2. Mutagenesis. 22, 235–243.

    Article  CAS  PubMed  Google Scholar 

  213. Viel A., Bruselles A., Meccia E., Fornasarig M., Quaia M., Canzonieri V., Policicchio E., Urso E.D., Agostini M., Genuardi M., Lucci-Cordisco E., Venesio T., Martayan A., Diodoro M.G., Sanchez-Mete L., et al. 2017. A specific mutational signature associated with DNA 8-oxoguanine persistence in MUTYH-defective colorectal cancer. EBioMedicine. 20, 39–49.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Colussi C., Parlanti E., Degan P., Aquilina G., Barnes D., Macpherson P., Karran P., Crescenzi M., Dogliotti E., Bignami M. 2002. The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool. Curr. Biol. 12, 912–918.

    Article  CAS  PubMed  Google Scholar 

  215. McDowell H.D., Carney J.P., Wilson T.M. 2008. Inhibition of the 5′ to 3′ exonuclease activity of hEXO1 by 8-oxoguanine. Environ. Mol. Mutagen. 49, 388–398.

    Article  CAS  PubMed  Google Scholar 

  216. Gu Y., Parker A., Wilson T.M., Bai H., Chang D.-Y., Lu A.-L. 2002. Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J. Biol. Chem. 277, 11135–11142.

    Article  CAS  PubMed  Google Scholar 

  217. Repmann S., Olivera-Harris M., Jiricny J. 2015. Influence of oxidized purine processing on strand directionality of mismatch repair. J. Biol. Chem. 290, 9986–9999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Gogos A., Clarke N.D. 1999. Characterization of an 8-oxoguanine DNA glycosylase from Methanococcus jannaschii. J. Biol. Chem. 274, 30447–30450.

    Article  CAS  PubMed  Google Scholar 

  219. Faucher F., Duclos S., Bandaru V., Wallace S.S., Doublié S. 2009. Crystal structures of two archaeal 8‑oxoguanine DNA glycosylases provide structural insight into guanine/8-oxoguanine distinction. Structure. 17, 703–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Faucher F., Wallace S.S., Doublié S. 2010. The C-terminal lysine of Ogg2 DNA glycosylases is a major molecular determinant for guanine/8-oxoguanine distinction. J. Mol. Biol. 397, 46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chung J.H., Suh M.-J., Park Y.I., Tainer J.A., Han Y.S. 2001. Repair activities of 8-oxoguanine DNA glycosylase from Archaeoglobus fulgidus, a hyperthermophilic archaeon. Mutat. Res. 486, 99–111.

    Article  CAS  PubMed  Google Scholar 

  222. Fujii M., Hata C., Ukita M., Fukushima C., Matsuura C., Kawashima-Ohya Y., Tomobe K., Kawashima T. 2016. Characterization of a thermostable 8-oxoguanine DNA glycosylase specific for GO/N mismatches from the thermoacidophilic archaeon Thermoplasma volcanium. Archaea. 2016, 8734894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Sartori A.A., Lingaraju G.M., Hunziker P., Winkler F.K., Jiricny J. 2004. Pa-AGOG, the founding member of a new family of archaeal 8-oxoguanine DNA-glycosylases. Nucleic Acids Res. 32, 6531–6539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Lingaraju G.M., Sartori A.A., Kostrewa D., Prota A.E., Jiricny J., Winkler F.K. 2005. A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure. Structure. 13, 87–98.

    Article  CAS  PubMed  Google Scholar 

  225. Lingaraju G.M., Prota A.E., Winkler F.K. 2009. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. DNA Repair (Amst.). 8, 857–864.

    Article  CAS  Google Scholar 

  226. Zhang L., Li Y., Shi H., Zhang D., Yang Z., Oger P., Zheng J. 2019. Biochemical characterization and mutational studies of the 8-oxoguanine DNA glycosylase from the hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans. Appl. Microbiol. Biotechnol. 103, 8021–8033.

    Article  CAS  PubMed  Google Scholar 

  227. Gehring A.M., Zatopek K.M., Burkhart B.W., Potapov V., Santangelo T.J., Gardner A.F. 2020. Biochemical reconstitution and genetic characterization of the major oxidative damage base excision DNA repair pathway in Thermococcus kodakarensis. DNA Repair (Amst.). 86, 102767.

    Article  CAS  Google Scholar 

  228. White M.F., Allers T. 2018. DNA repair in the archaea: An emerging picture. FEMS Microbiol. Rev. 42, 514–526.

    CAS  PubMed  Google Scholar 

  229. Ishino S., Nishi Y., Oda S., Uemori T., Sagara T., Takatsu N., Yamagami T., Shirai T., Ishino Y. 2016. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea. Nucleic Acids Res. 44, 2977–2986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Al-Tassan N., Chmiel N.H., Maynard J., Fleming N., Livingston A.L., Williams G.T., Hodges A.K., Davies D.R., David S.S., Sampson J.R., Cheadle J.P. 2002. Inherited variants of MYH associated with somatic G:C → T:A mutations in colorectal tumors. Nat. Genet. 30, 227–232.

    Article  CAS  PubMed  Google Scholar 

  231. Chmiel N.H., Livingston A.L., David S.S. 2003. Insight into the functional consequences of inherited variants of the hMYH adenine glycosylase associated with colorectal cancer: Complementation assays with hMYH variants and pre-steady-state kinetics of the corresponding mutated E. coli enzymes. J. Mol. Biol. 327, 431–443.

    Article  CAS  PubMed  Google Scholar 

  232. Livingston A.L., Kundu S., Pozzi M.H., Anderson D.W., David S.S. 2005. Insight into the roles of tyrosine 82 and glycine 253 in the Escherichia coli adenine glycosylase MutY. Biochemistry. 44, 14179–14190.

    Article  CAS  PubMed  Google Scholar 

  233. Pope M.A., Chmiel N.H., David S.S. 2005. Insight into the functional consequences of hMYH variants associated with colorectal cancer: Distinct differences in the adenine glycosylase activity and the response to AP endonucleases of Y150C and G365D murine MYH. DNA Repair (Amst.). 4, 315–325.

    Article  CAS  Google Scholar 

  234. Jones S., Emmerson P., Maynard J., Best J.M., Jordan S., Williams G.T., Sampson J.R., Cheadle J.P. 2002. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C→T:A mutations. Hum. Mol. Genet. 11, 2961–2967.

    Article  CAS  PubMed  Google Scholar 

  235. Sieber O.M., Lipton L., Crabtree M., Heinimann K., Fidalgo P., Phillips R.K.S., Bisgaard M.-L., Orntoft T.F., Aaltonen L.A., Hodgson S.V., Thomas H.J.W., Tomlinson I.P.M. 2003. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N. Engl. J. Med. 348, 791–799.

    Article  PubMed  Google Scholar 

  236. Sampson J.R., Dolwani S., Jones S., Eccles D., Ellis A., Evans D.G., Frayling I., Jordan S., Maher E.R., Mak T., Maynard J., Pigatto F., Shaw J., Cheadle J.P. 2003. Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet. 362, 39–41.

    Article  CAS  PubMed  Google Scholar 

  237. Farrington S.M., Tenesa A., Barnetson R., Wiltshire A., Prendergast J., Porteous M., Campbell H., Dunlop M.G. 2005. Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am. J. Hum. Genet. 77, 112–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Nielsen M., Infante E., Brand R. 2019. in GeneReviews™ [Internet]. Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., Amemiya A., Eds. Seattle, WA: Univ. of Washington Seattle.

    Google Scholar 

  239. Short E., Sampson J. 2019. The role of inherited genetic variants in colorectal polyposis syndromes. Adv. Genet. 103, 183–217.

    Article  CAS  PubMed  Google Scholar 

  240. Curia M.C., Catalano T., Aceto G.M. 2020. MUTYH: Not just polyposis. World J. Clin. Oncol. 11, 428–449.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A.J.R., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., Børresen-Dale A.-L., Boyault S., Burkhardt B., Butler A.P., Caldas C., Davies H.R., et al. 2013. Signatures of mutational processes in human cancer. Nature. 500, 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Simonelli V., Camerini S., Mazzei F., Van Loon B., Allione A., D’Errico M., Barone F., Minoprio A., Ricceri F., Guarrera S., Russo A., Dalhus B., Crescenzi M., Hübscher U., Bjørås M., et al. 2013. Genotype–phenotype analysis of S326C OGG1 polymorphism: a risk factor for oxidative pathologies. Free Radic. Biol. Med. 63, 401–409.

    Article  CAS  PubMed  Google Scholar 

  243. Kang S.W., Kim S.K., Park H.J., Chung J.-H., Ban J.Y. 2017. Human 8-oxoguanine DNA glycosylase gene polymorphism (Ser326Cys) and cancer risk: Updated meta-analysis. Oncotarget. 8, 44761–44775.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Kohno T., Shinmura K., Tosaka M., Tani M., Kim S.-R., Sugimura H., Nohmi T., Kasai H., Yokota J. 1998. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene. 16, 3219–3225.

    Article  CAS  PubMed  Google Scholar 

  245. Luna L., Rolseth V., Hildrestrand G.A., Otterlei M., Dantzer F., Bjørås M., Seeberg E. 2005. Dynamic relocalization of hOGG1 during the cell cycle is disrupted in cells harbouring the hOGG1-Cys326 polymorphic variant. Nucleic Acids Res. 33, 1813–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Hill J.W., Evans M.K. 2006. Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase. Nucleic Acids Res. 34, 1620–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Bravard A., Vacher M., Moritz E., Vaslin L., Hall J., Epe B., Radicella J.P. 2009. Oxidation status of human OGG1-S326C polymorphic variant determines cellular DNA repair capacity. Cancer Res. 69, 3642–3649.

    Article  CAS  PubMed  Google Scholar 

  248. Kershaw R.M., Hodges N.J. 2012. Repair of oxidative DNA damage is delayed in the Ser326Cys polymorphic variant of the base excision repair protein OGG1. Mutagenesis. 27, 501–510.

    Article  CAS  PubMed  Google Scholar 

  249. Moritz E., Pauly K., Bravard A., Hall J., Radicella J.P., Epe B. 2014. hOGG1-Cys326 variant cells are hypersensitive to DNA repair inhibition by nitric oxide. Carcinogenesis. 35, 1426–1433.

    Article  CAS  PubMed  Google Scholar 

  250. Yakushiji H., Maraboeuf F., Takahashi M., Deng Z.-S., Kawabata S.-I., Nakabeppu Y., Sekiguchi M. 1997. Biochemical and physicochemical characterization of normal and variant forms of human MTH1 protein with antimutagenic activity. Mutat. Res. 384, 181–194.

    Article  CAS  PubMed  Google Scholar 

  251. Sakai Y., Oda H., Yoshimura D., Furuichi M., Kang D., Iwai S., Hara T., Nakabeppu Y. 2006. The GT to GC single nucleotide polymorphism at the beginning of an alternative exon 2C of human MTH1 gene confers an amino terminal extension that functions as a mitochondrial targeting signal. J. Mol. Med. 84, 660–670.

    Article  CAS  PubMed  Google Scholar 

  252. Kimura Y., Oda S., Egashira A., Kakeji Y., Baba H., Nakabeppu Y., Maehara Y. 2004. A variant form of hMTH1, a human homologue of the E coli mutT gene, correlates with somatic mutation in the p53 tumour suppressor gene in gastric cancer patients. J. Med. Genet. 41, e57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Miyako K., Kohno H., Ihara K., Kuromaru R., Matsuura N., Hara T. 2004. Association study of human MTH1 gene polymorphisms with type 1 diabetes mellitus. Endocr. J. 51, 493–498.

    Article  CAS  PubMed  Google Scholar 

  254. Kohno T., Sakiyama T., Kunitoh H., Goto K., Nishiwaki Y., Saito D., Hirose H., Eguchi T., Yanagitani N., Saito R., Sasaki-Matsumura R., Mimaki S., Toyama K., Yamamoto S., Kuchiba A., et al. 2006. Association of polymorphisms in the MTH1 gene with small cell lung carcinoma risk. Carcinogenesis. 27, 2448–2454.

    Article  CAS  PubMed  Google Scholar 

  255. Cao L., Zhou W., Zhu Y., Guo W., Cai Z., He X., Xie Y., Li X., Zhu D., Wang Y. 2013. Combined analysis of polymorphism variants in hMTH1, hOGG1 and MUTYH genes on the risk of type 2 diabetes in the Chinese population. Gene. 519, 50–54.

    Article  CAS  PubMed  Google Scholar 

  256. Fleming A.M., Burrows C.J. 2017. 8-Oxo-7,8-dihydroguanine, friend and foe: Epigenetic-like regulator versus initiator of mutagenesis. DNA Repair (Amst.). 56, 75–83.

    Article  CAS  Google Scholar 

  257. Fleming A.M., Ding Y., Burrows C.J. 2017. Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc. Natl. Acad. Sci. U. S. A. 114, 2604–2609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Tahara Y.-K., Kietrys A.M., Hebenbrock M., Lee Y., Wilson D.L., Kool E.T. 2019. Dual inhibitors of 8-oxo-guanine surveillance by OGG1 and NUDT1. ACS Chem. Biol. 14, 2606–2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Warpman Berglund U., Sanjiv K., Gad H., Kalderén C., Koolmeister T., Pham T., Gokturk C., Jafari R., Maddalo G., Seashore-Ludlow B., Chernobrovkin A., Manoilov A., Pateras I.S., Rasti A., Jemth A.-S., et al. 2016. Validation and development of MTH1 inhibitors for treatment of cancer. Ann. Oncol. 27, 2275–2283.

    Article  CAS  PubMed  Google Scholar 

  260. Hua X., Sanjiv K., Gad H., Pham T., Gokturk C., Rasti A., Zhao Z., He K., Feng M., Zang Y., Zhang J., Xia Q., Helleday T., Warpman Berglund U. 2019. Karonudib is a promising anticancer therapy in hepatocellular carcinoma. Ther. Adv. Med. Oncol. 11, 1758835919866960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Magkouta S.F., Pappas A.G., Vaitsi P.C., Agioutantis P.C., Pateras I.S., Moschos C.A., Iliopoulou M.P., Kosti C.N., Loutrari H.V., Gorgoulis V.G., Kalomenidis I.T. 2020. MTH1 favors mesothelioma progression and mediates paracrine rescue of bystander endothelium from oxidative damage. JCI Insight. 5, e134885.

    Article  PubMed Central  Google Scholar 

  262. Samaranayake G.J., Huynh M., Rai P. 2017. MTH1 as a chemotherapeutic target: the elephant in the room. Cancers. 9, 47.

    Article  PubMed Central  CAS  Google Scholar 

  263. Mechetin G.V., Endutkin A.V., Diatlova E.A., Zharkov D.O. 2020. Inhibitors of DNA glycosylases as prospective drugs. Int. J. Mol. Sci. 21, 3118.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by grant no. 19-74-00068 from the Russian Science Foundation (GO systems in bacteria) and partially by grant no. 17-00-00261/17-00-00265 from the Russian Foundation for Basic Research (GO systems in eukaryotes).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Endutkin or D. O. Zharkov.

Ethics declarations

The authors state that there is no conflict of interest.

This article does not contain any studies with the use of humans as objects of research.

Additional information

Translated by A. Levina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endutkin, A.V., Zharkov, D.O. GO System, a DNA Repair Pathway to Cope with Oxidative Damage. Mol Biol 55, 193–210 (2021). https://doi.org/10.1134/S0026893321020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020072

Keywords:

Navigation