Skip to main content
Log in

Comparative Analysis of the Activity of the Polymorphic Variants of Human Uracil-DNA-Glycosylases SMUG1 and MBD4

  • ENZYMOLOGY OF DNA REPAIR SYSTEMS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The human N-glycosylases SMUG1 and MBD4 catalyze the removal of uracil residues from DNA resulting from cytosine deamination or replication errors. For polymorphic variants of SMUG1 (G90C, P240H, N244S, N248Y) and the MBD4cat catalytic domain (S470L, G507S, R512W, H557D), the structures of enzyme-substrate complexes were obtained by molecular dynamic simulation. It was experimentally found that the SNP variants of SMUG1, N244S and N248Y, had increased catalytic activity compared to the wild-type enzyme, probably due to the acceleration of the dissociation of the enzyme–product complex and an increase in the enzyme turnover rate. All other SNP variants of SMUG1 (G90C, P240H) and MBD4cat, in which amino acid substitutions disrupted the substrate binding region and/or active site, had significantly lower catalytic activity than the wild-type enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lari S.-U., Chen C.-Y., Vertéssy B.G., Morré J., Bennett S.E. 2006. Quantitative determination of uracil residues in Escherichia coli DNA: contribution of ung, dug, and dut genes to uracil avoidance. DNA Repair (Amst.). 5, 1407–1420.

    Article  CAS  Google Scholar 

  2. Lewis C.A., Crayle J., Zhou S., Swanstrom R., Wolfenden R.,Wolfenden R. 2016. Cytosine deamination and the precipitous decline of spontaneous mutation during Earth’s history. Proc. Natl. Acad. Sci. U. S. A. 113, 8194–8199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature. 362, 709–715.

    Article  CAS  PubMed  Google Scholar 

  4. Jaszczur M., Bertram J.G., Pham P., Scharff M.D., Goodman M.F. 2013. AID and Apobec3G haphazard deamination and mutational diversity. Cell. Mol. Life Sci. 70, 3089–3108.

    Article  CAS  PubMed  Google Scholar 

  5. Rebhandl S., Hümer M., Greil R., Geisberger R. 2015. AID/APOBEC deaminases and cancer. Oncoscience. 2, 320–333.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ladner R.D. 2001. The role of dUTPase and uracil-DNA repair in cancer chemotherapy. Curr. Protein Pept. Sci. 2, 361–370.

    Article  CAS  PubMed  Google Scholar 

  7. Krokan H.E., Drabløs F., Slupphaug G. 2002. Uracil in DNA: Occurrence, consequences and repair. Oncogene. 21, 8935–8948.

    Article  CAS  PubMed  Google Scholar 

  8. Jacobs A.L., Schar P. 2012. DNA glycosylases: In DNA repair and beyond. Chromosoma. 121, 1–20.

    Article  CAS  PubMed  Google Scholar 

  9. Visnes T., Doseth B., Pettersen H.S., Hagen L., Sousa M.M., Akbari M., Otterlei M., Kavli B., Slupphaug G., Krokan H.E. 2009. Uracil in DNA and its processing by different DNA glycosylases. Philos. Trans. R. Soc. B. 364, 563–568.

    Article  CAS  Google Scholar 

  10. Dawson N.L., Lewis T.E., Das S., Lees J.G., Lee D., Ashford P., Orengo C.A., Sillitoe I. 2017. CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res. 45, D289–D295.

    Article  CAS  PubMed  Google Scholar 

  11. Wibley J.E.A., Waters T.R., Haushalter K., Verdine G.L., Pearl L.H. 2003. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol. Cell. 11, 1647–1659.

    Article  CAS  PubMed  Google Scholar 

  12. Kavli B., Sundheim O., Akbari M., Otterlei M., Nilsen H., Skorpen F., Aas P.A., Hagen L., Krokan H.E., Slupphaug G. 2002. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem. 277, 39926–39936.

    Article  CAS  PubMed  Google Scholar 

  13. Kavli B., Otterlei M., Slupphaug G., Krokan H.E. 2007. Uracil in DNA: General mutagen, but normal intermediate in acquired immunity. DNA Repair (Amst.). 6, 505–516.

    Article  CAS  Google Scholar 

  14. Zhang Z., Shen J., Yang Y., Li J., Cao W., Xie W. 2016. Structural basis of substrate specificity in Geobacter metallireducens SMUG1. ACS Chem. Biol. 11, 1729–1736.

    Article  CAS  PubMed  Google Scholar 

  15. Kuznetsova A.A., Iakovlev D.A., Misovets I.V., Ishchenko A.A., Saparbaev M.K., Kuznetsov N.A., Fedorova O.S. 2017. Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1. Mol. Biosyst. 13, 2638–2649.

    Article  CAS  PubMed  Google Scholar 

  16. Matsubara M., Tanaka T., Terato H., Ohmae E., Izumi S., Katayanagi K., Ide H. 2004. Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase. Nucleic Acids Res. 32, 5291–5302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iakovlev D.A., Alekseeva I. V., Vorobjev Y.N., Kuznetsov N.A., Fedorova O.S. 2019. The role of active-site residues Phe98, HiS239, and Arg243 in DNA binding and in the catalysis of human uracil-DNA glycosylase SMUG1. Molecules. 24 (17), 3133.

    Article  CAS  PubMed Central  Google Scholar 

  18. Iakovlev D.A., Alekseeva I.V., Kuznetsov N.A., Fedo-rova O.S. 2020. Role of Arg243 and His239 residues in the recognition of damaged nucleotides by human uracil-DNA glycosylase SMUG1. Biochemistry (Moscow). 85 (5), 594‒603.

    CAS  PubMed  Google Scholar 

  19. Sjolund A.B., Senejani A.G., Sweasy J.B. 2013. MBD4 and TDG: multifaceted DNA glycosylases with ever expanding biological roles. Mutat. Res. 743744, 12–25.

    Article  PubMed  CAS  Google Scholar 

  20. Turner D.P., Cortellino S., Schupp J.E., Caretti E., Loh T., Kinsella T.J., Bellacosa A. 2006. The DNA N‑glycosylase MED1 exhibits preference for halogenated pyrimidines and is involved in the cytotoxicity of 5-iododeoxyuridine. Cancer Res. 66 (15), 7686–7693.

    Article  CAS  PubMed  Google Scholar 

  21. Morera S., Grin I., Vigouroux A., Couve S., Henriot V., Saparbaev M., Ishchenko A.A. 2012. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Nucleic Acids Res. 40, 9917–9926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hill P.W., Amouroux R., Hajkova P. 2014. DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story. Genomics. 104, 324–333.

    Article  CAS  PubMed  Google Scholar 

  23. Rai K., Huggins I.J., James S.R., Karpf A.R., Jones D.A., Cairns B.R. 2008. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and Gadd45. Cell. 135, 1201–1212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walavalkar N.M., Cramer J.M., Buchwald W.A., Scarsdale J.N., Williams D.C. 2014. Solution structure and intramolecular exchange of methyl-cytosine binding domain protein 4 (MBD4) on DNA suggests a mechanism to scan for mCpG/TpG mismatches. Nucleic Acids Res. 42, 11218–11232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Manvilla B.A., Maiti A., Begley M.C., Toth E.A., Drohat A.C. 2012. Crystal structure of human methyl-binding domain IV glycosylase bound to abasic DNA. J. Mol. Biol. 420, 164–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hashimoto H., Zhang X., Cheng X. 2012. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation. Nucleic Acids Res. 40, 8276–8284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen M.R., Jones I.M., Mohrenweiser H. 1998. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res. 58, 604‒608.

    CAS  PubMed  Google Scholar 

  28. Mohrenweiser H.W., Jones I.M. 1998. Variation in DNA repair is a factor in cancer susceptibility: A paradigm for the promises and perils of individual and population risk estimation? Mutat. Res. 400, 5‒24.

    Article  Google Scholar 

  29. Hung R.J., Hall J., Brennan P., Boffetta P. 2005. Genetic polymorphisms in the base excision repair pathway and cancer risk: A huge review. Am. J. Epidemiol. 162, 925‒942.

    Article  PubMed  Google Scholar 

  30. Nohmi T., Kim S.R., Yamada M. 2005. Modulation of oxidative mutagenesis and carcinogenesis by polymorphic forms of human DNA repair enzymes. Mutat. Res. 591, 60‒73.

    Article  CAS  PubMed  Google Scholar 

  31. Illuzzi J.L., Harris N.A., Manvilla B.A., Kim D., Li M., Drohat A.C., Wilson D.M. 2013. Functional assessment of population and tumor-associated APE1 protein variants. PLoS One. 8, e65922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim W.C., Ma C., Li W.M., Chohan M., Wilson D.M., Lee C.H. 2014. Altered endoribonuclease activity of apurinic/apyrimidinic endonuclease 1 variants identified in the human population. PLoS One. 9, 1‒9.

    Google Scholar 

  33. Kwiatkowski D., Czarny P., Galecki P., Bachurska A., Talarowska M., Orzechowska A., Bobinska K., Bielecka-Kowalska A., Pietras T., Szemraj J., Maes M., Sliwinski T. 2015. Variants of base excision repair genes MUTYH, PARP1 and XRCC1 in Alzheimer’s disease risk. Neuropsychobiology. 71, 176–186.

    Article  CAS  PubMed  Google Scholar 

  34. Czarny P., Kwiatkowski D., Toma M., Kubiak J., Sliwinska A., Talarowska M., Szemraj J., Maes M., Galecki P., Sliwinski T. 2017. Impact of single nucleotide polymorphisms of base excision repair genes on DNA damage and efficiency of DNA repair in recurrent depression disorder. Mol. Neurobiol. 54, 4150–4159.

    Article  CAS  PubMed  Google Scholar 

  35. Marsden C.G., Dragon J.A., Wallace S.S., Sweasy J.B. 2017. Base excision repair variants in cancer. Methods Enzymol. 591, 119–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan K.K.L., Zhang Q.M., Dianov G.L. 2006. Base excision repair fidelity in normal and cancer cells. Mutagenesis. 21, 173‒178.

    Article  CAS  PubMed  Google Scholar 

  37. Sweasy J.B., Lang T.M., DiMaio D. 2006. Is base excision repair a tumor suppressor mechanism? Cell Cycle. 5, 250–259.

    Article  CAS  PubMed  Google Scholar 

  38. Tudek B. 2007. Base excision repair modulation as a risk factor for human cancers. Mol. Aspects Med. 28, 258‒275.

    Article  CAS  PubMed  Google Scholar 

  39. D’Errico M., Parlanti E., Dogliotti E. 2008. Mechanism of oxidative DNA damage repair and relevance to human pathology. Mutat. Res. 659, 4‒14.

    Article  PubMed  CAS  Google Scholar 

  40. Nemec A.A., Wallace S.S., Sweasy J.B. 2010. Variant base excision repair proteins: contributors to genomic instability. Semin. Cancer Biol. 20, 320‒328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilson D.M., Kim D., Berquist B.R., Sigurdson A.J. 2011. Variation in base excision repair capacity. Mutat. Res. 711, 100‒112.

    Article  CAS  PubMed  Google Scholar 

  42. Wallace S.S., Murphy D.L., Sweasy J.B. 2012. Base excision repair and cancer. Cancer Lett. 327, 73‒89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karahalil B., Bohr V.A., Wilson D.M. 2012. Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk. Hum. Exp. Toxicol. 31, 981‒1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shapovalov M.V., Dunbrack R.L. 2011. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure. 19, 844–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. 1995. A second generation all atom force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117, 5179–5197.

    Article  CAS  Google Scholar 

  46. Wang J., Cieplak P., Kollman P.A. 2000. How well does a Restrained Electrostatic Potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074.

    Article  CAS  Google Scholar 

  47. Popov A.V., Vorob’ev Yu.N. 2010. GUI-BioPASED: A program for molecular dynamics simulations of biopolymers with a graphical user interface. Mol. Biol. (Moscow). 44 (4), 648–654.

    Article  CAS  Google Scholar 

  48. Lazaridis T., Karplus M. 1999. Effective energy function for proteins in solution. Proteins. 35, 133–152.

    Article  CAS  PubMed  Google Scholar 

  49. Kuznetsova A.A., Kuznetsov N.A., Ishchenko A.A., Saparbaev M.K., Fedorova O.S. 2014. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1. Biochim. Biophys. Acta. 1840, 3042–3051.

    Article  CAS  PubMed  Google Scholar 

  50. Yakovlev D.A., Kuznetsova A.A., Fedorova A.S., Kuznetsov N.A. 2017. Search for modified DNA sites with the human methyl-CpG-binding enzyme MBD4. Acta Naturae. 9, 95–105.

    Article  Google Scholar 

  51. Petronzelli F., Riccio A., Markham G.D., Seeholzer S.H., Genuardi M., Karbowski M., Yeung A.T., Matsumoto Y., Bellacosa A. 2000. Investigation of the substrate spectrum of the human mismatch-specific DNA N-glycosylase MED1 (MBD4): Fundamental role of the catalytic domain. J. Cell Physiol. 185, 473–480.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grant no. 16-14-10038 from the Russian Science Foundation and partial support from budgetary funding (no. АААА-А17-117020210022-4) to ensure routine maintenance of the equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Kuznetsov or O. S. Fedorova.

Ethics declarations

The authors declare they have no conflict of interest. This study does not contain any research involving humans or animals as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, I.V., Bakman, A.S., Iakovlev, D.A. et al. Comparative Analysis of the Activity of the Polymorphic Variants of Human Uracil-DNA-Glycosylases SMUG1 and MBD4. Mol Biol 55, 241–251 (2021). https://doi.org/10.1134/S0026893321020035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020035

Keywords:

Navigation