Skip to main content
Log in

Initial stages of DNA Base Excision Repair in Nucleosomes

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In mammalian cells, base excision repair (BER) is the main pathway responsible for the correction of a variety of chemically modified DNA bases. DNA packaging in chromatin affects the accessibility of damaged sites to the enzymes involved in repair processes. This review presents data concerning the enzymes involved in BER. Within the nucleosome core particle (NCP), the accessibility of damaged DNA to enzymes is hindered by the presence of a histone octamer. This means that the removal of DNA lesions largely depends on their rotational and translational positioning in the NCP, as well as on the specific features of each enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 389, 251–260.

    Article  CAS  PubMed  Google Scholar 

  2. Vasudevan D., Chua E.Y.D., Davey C.A. 2010. Crystal structures of nucleosome core particles containing the “601” strong positioning sequence. J. Mol. Biol. 403, 1–10.

    Article  CAS  PubMed  Google Scholar 

  3. Finch J.T., Lutter L.C., Rhodes D., Brown R.S., Rushton B., Levitt M., Klug A. 1977. Structure of nucleosome core particles of chromatin. Nature. 269, 29–36.

    Article  CAS  PubMed  Google Scholar 

  4. Richmond T.J., Finch J.T., Rushton B., Rhodes D., Klug A. 1984. Structure of the nucleosome core particle at 7 Å resolution. Nature. 311, 532–537.

    Article  CAS  PubMed  Google Scholar 

  5. Davey C.A., Sargent D.F., Luger K., Maeder A.W., Richmond T.J. 2002. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113.

    Article  CAS  PubMed  Google Scholar 

  6. Richmond T.J., Davey C.A. 2003. The structure of DNA in the nucleosome core. Nature. 423, 145–150.

    Article  CAS  PubMed  Google Scholar 

  7. Tsunaka Y., Kajimura N., Tate S., Morikawa K. 2005. Alteration of the nucleosomal DNA path in the crystal structure of a human nucleosome core particle. Nucleic Acids Res. 33, 3424–3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tachiwana H., Kagawa W., Osakabe A., Kawaguchi K., Shiga T., Hayashi-Takanaka Y., Kimura H., Kurumizaka H. 2010. Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc. Natl. Acad. Sci. U. S. A. 107, 10454–10459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ueda J., Harada A., Urahama T., Machida S., Maehara K., Hada M., Makino Y., Nogami J., Horikoshi N., Osakabe A., Taguchi H., Tanaka H., Tachiwana H., Yao T., Yamada M., et al. 2017. Testis-specific histone variant H3t gene is essential for entry into spermatogenesis. Cell Rep. 18, 593–600.

    Article  CAS  PubMed  Google Scholar 

  10. Harp J.M., Hanson B.L., Timm D.E., Bunick G.J. 2000. Asymmetries in the nucleosome core particle at 2.5 Å resolution. Acta Crystallogr. Sect. D Biol. Crystallogr. 56, 1513–1534.

    Article  CAS  Google Scholar 

  11. White C.L., Suto R.K., Luger K. 2001. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J. 20, 5207–5218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clapier C.R., Chakravarthy S., Petosa C., Fernández-Tornero C., Luger K., Müller C.W. 2008. Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A–H2B histone dimer. Proteins Struct. Funct. Genet. 71, 1–7.

    Article  CAS  PubMed  Google Scholar 

  13. Chua E.Y.D., Vasudevan D., Davey G.E., Wu B., Davey C.A. 2012. The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res. 40, 6338–6352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lowary P.T., Widom J. 1998. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42.

    Article  CAS  PubMed  Google Scholar 

  15. Polach K.J., Widom J. 1999. Restriction enzymes as probes of nucleosome stability and dynamics. Methods Enzymol. 304, 278–298.

    Article  CAS  PubMed  Google Scholar 

  16. Simpson R.T., Stafford D.W. 1983. Structural features of a phased nucleosome core particle. Proc. Natl. Acad. Sci. U. S. A. 80, 51–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Long E.O., Dawid I.B. 1980. Repeated genes in eukaryotes. Annu. Rev. Biochem. 49, 727–764.

    Article  CAS  PubMed  Google Scholar 

  18. Pepenella S., Murphy K.J., Hayes J.J. 2014. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma. 123, 3–13.

    Article  CAS  PubMed  Google Scholar 

  19. Mellor J. 2006. Dynamic nucleosomes and gene transcription. Trends Genet. 22 (6), 320–329. https://doi.org/10.1016/j.tig.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  20. Studitsky V.M., Kassavetis G.A., Geiduschek E.P., Felsenfeldt G. 1997. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science. 278, 1960–1963.

    Article  CAS  PubMed  Google Scholar 

  21. Kulaeva O.I., Gaykalova D.A., Pestov N.A., Golovastov V.V., Vassylyev D.G., Artsimovitch I., Studitsky V.M. 2009. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nat. Struct. Mol. Biol. 16, 1272–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nacheva G.A., Guschin D.Y., Preobrazhenskaya O.V., Karpov V.L., Ebralidse K.K., Mirzabekov A.D. 1989. Change in the pattern of histone binding to DNA upon transcriptional activation. Cell. 58, 27–36.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y., Wilson S.H. 2012. DNA base excision repair: A mechanism of trinucleotide repeat expansion. Trends Biochem. Sci. 37, 162–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Esadze A., Stivers J.T. 2018. Facilitated diffusion mechanisms in DNA base excision repair and transcriptional activation. Chem. Rev. 118, 11298–11323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodriguez Y., Hinz J.M., Smerdon M.J. 2015. Accessing DNA damage in chromatin: Preparing the chromatin landscape for base excision repair. DNA Repair (Amst.). 32, 113–119.

    Article  CAS  PubMed Central  Google Scholar 

  26. Jagannathan I., Cole H.A., Hayes J.J. 2006. Base excision repair in nucleosome substrates. Chromosom. Res. 14, 27–37.

    Article  CAS  Google Scholar 

  27. Polach K.J., Widom J. 1995. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149.

    Article  CAS  PubMed  Google Scholar 

  28. Li G., Levitus M., Bustamante C., Widom J. 2005. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53.

    Article  CAS  PubMed  Google Scholar 

  29. Anderson J.D., Widom J. 2000. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979–987.

    Article  CAS  PubMed  Google Scholar 

  30. Tims H.S., Gurunathan K., Levitus M., Widom J. 2011. Dynamics of nucleosome invasion by DNA binding proteins. J. Mol. Biol. 411, 430–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krokan H.E., Drabløs F., Slupphaug G. 2002. Uracil in DNA: Occurrence, consequences and repair. Oncogene. 21, 8935–8948.

    Article  CAS  PubMed  Google Scholar 

  32. Andersen S., Heine T., Sneve R., König I., Krokan H.E., Epe B., Nilsen H. 2004. Incorporation of dUMP into DNA is a major source of spontaneous DNA damage, while excision of uracil is not required for cytotoxicity of fluoropyrimidines in mouse embryonic fibroblasts. Carcinogenesis. 26, 547–555.

    Article  PubMed  Google Scholar 

  33. Kavli B., Otterlei M., Slupphaug G., Krokan H. 2007. Uracil in DNA: General mutagen, but normal intermediate in acquired immunity. DNA Repair (Amst.). 6, 505–516.

    Article  CAS  Google Scholar 

  34. Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature. 362, 709–715.

    Article  CAS  PubMed  Google Scholar 

  35. Cortazar D., Kunz C., Saito Y., Steinacher R., Schar P. 2007. The enigmatic thymine DNA glycosylase. DNA Repair (Amst.). 6, 489–504.

    Article  CAS  Google Scholar 

  36. Neddermann P., Jiricny J. 1993. The purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells. J. Biol. Chem. 268, 21218–21224.

    Article  CAS  PubMed  Google Scholar 

  37. Neddermann P., Jiricny J. 1994. Efficient removal of uracil from G.U mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells. Proc. Natl. Acad. Sci. U. S. A. 91, 1642–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wibley J.E.A., Waters T.R., Haushalter K., Verdine G.L., Pearl L.H. 2003. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol. Cell. 11, 1647–1659.

    Article  CAS  PubMed  Google Scholar 

  39. Masaoka A., Matsubara M., Hasegawa R., Tanaka T., Kurisu S., Terato H., Ohyama Y., Karino N., Matsuda A., Ide H. 2003. Mammalian 5-formyluracil−DNA glycosylase. 2. role of SMUG1 uracil−DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions. Biochemistry. 42, 5003–5012.

    Article  CAS  PubMed  Google Scholar 

  40. Hendrich B., Bird A. 1998. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18, 6538–6547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hendrich B., Hardeland U., Ng H.H., Jiricny J., Bird A. 1999. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature401, 301–304.

    Article  CAS  PubMed  Google Scholar 

  42. Nilsen H., Lindahl T., Verreault A. 2002. DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J. 21, 5943–5952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beard B.C., Wilson S.H., Smerdon M.J. 2003. Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Proc. Natl. Acad. Sci. U. S. A. 100, 7465–7470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beard B.C., Stevenson J.J., Wilson S.H., Smerdon M.J. 2005. Base excision repair in nucleosomes lacking histone tails. DNA Repair (Amst.). 4, 203–209.

    Article  CAS  Google Scholar 

  45. Ishibashi T., So K., Cupples C.G., Ausio J. 2008. MBD4-mediated glycosylase activity on a chromatin template is enhanced by acetylation. Mol. Cell. Biol. 28, 4734–4744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cole H.A., Tabor-Godwin J.M., Hayes J.J. 2010. Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets. J. Biol. Chem. 285, 2876–2885

    Article  CAS  PubMed  Google Scholar 

  47. Hinz J.M., Rodriguez Y., Smerdon M.J. 2010. Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme. Proc. Natl. Acad. Sci. U. S. A. 107, 4646–4651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kosmoski J.V., Smerdon M.J. 1999. Synthesis and nucleosome structure of DNA containing a UV photoproduct at a specific site. Biochemistry. 38, 9485–9494.

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez Y., Smerdon M.J. 2013. The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes. J. Biol. Chem. 288, 13863–13875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tarantino M.E., Dow B.J., Drohat A.C., Delaney S. 2018. Nucleosomes and the three glycosylases: high, medium, and low levels of excision by the uracil DNA glycosylase superfamily. DNA Repair (Amst.). 72, 56–63.

    Article  CAS  Google Scholar 

  51. Olsen L.C., Aasland R., Wittwer C.U., Krokan H.E., Helland D.E. 1989. Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. EMBO J. 8, 3121–3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiao G., Tordova M., Jagadeesh J., Drohat A.C., Stivers J.T., Gilliland G.L. 1999. Crystal structure of Escherichia coli uracil DNA glycosylase and its complexes with uracil and glycerol: Structure and glycosylase mechanism revisited. Proteins Struct. Funct. Genet. 35, 13–24.

    Article  CAS  PubMed  Google Scholar 

  53. Wu B., Mohideen K., Vasudevan D., Davey C.A. 2010. Structural insight into the sequence dependence of nucleosome positioning. Structure. 18, 528–536.

    Article  CAS  PubMed  Google Scholar 

  54. Olmon E.D., Delaney S. 2017. Differential ability of five DNA glycosylases to recognize and repair damage on nucleosomal DNA. ACS Chem. Biol. 12, 692–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hazra T.K., Izumi T., Boldogh I., Imhoff B., Kow Y.W., Jaruga P., Dizdaroglu M., Mitra S. 2002. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proc. Natl. Acad. Sci. U. S. A. 99, 3523–3528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bandaru V., Sunkara S., Wallace S.S., Bond J.P. 2002. A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII. DNA Repair (Amst.). 1, 517–529.

    Article  CAS  Google Scholar 

  57. Doublie S., Bandaru V., Bond J.P., Wallace S.S. 2004. The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proc. Natl. Acad. Sci. U. S. A. 101, 10284–10289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang N., Chaudhry M.A., Wallace S.S. 2006. Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in γ-irradiated human cells. DNA Repair (Amst.). 5, 43–51.

    Article  CAS  Google Scholar 

  59. Ide H., Kotera M. 2004. Human DNA glycosylases involved in the repair of oxidatively damaged DNA. Biol. Pharm. Bull. 27, 480–485.

    Article  CAS  PubMed  Google Scholar 

  60. Miyabe I., Zhang Q.-M., Kino K., Sugiyama H., Takao M., Yasui A., Yonei S. 2002. Identification of 5‑formyluracil DNA glycosylase activity of human hNTH1 protein. Nucleic Acids Res. 30, 3443–3448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Prasad A., Wallace S.S., Pederson D.S. 2007. Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1. Mol. Cell. Biol. 27, 8442–8453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu X., Choudhury S., Roy R. 2003. In vitro and in vivo dimerization of human endonuclease III stimulates its activity. J. Biol. Chem. 278, 50061–50069.

    Article  CAS  PubMed  Google Scholar 

  63. Odell I.D., Newick K., Heintz N.H., Wallace S.S., Pederson D.S. 2010. Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1. DNA Repair (Amst.). 9, 134–143.

    Article  CAS  Google Scholar 

  64. Dou H., Mitra S., Hazra T.K. 2003. Repair of oxidized bases in DNA bubble structures by human dNA glycosylases NEIL1 and NEIL2. J. Biol. Chem. 278, 49679–49684.

    Article  CAS  PubMed  Google Scholar 

  65. Dou H., Theriot C.A., Das A., Hegde M.L., Matsumoto Y., Boldogh I., Hazra T.K., Bhakat K.K., Mitra S. 2008. Interaction of the human DNA glycosylase NEIL1 with proliferating cell nuclear antigen: the potential for replication-associated repair of oxidized bases in mammalian genomes. J. Biol. Chem. 283, 3130–3140.

    Article  CAS  PubMed  Google Scholar 

  66. Hegde M.L., Theriot C.A., Das A., Hegde P.M., Guo Z., Gary R.K., Hazra T.K., Shen B., Mitra S. 2008. Physical and functional interaction between human oxidized base-specific DNA glycosylase NEIL1 and flap endonuclease. J. Biol. Chem. 283, 27028–27037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Odell I.D., Barbour J.-E., Murphy D.L., Della-Maria J.A., Sweasy J.B., Tomkinson A E., Wallace S.S., Pederson D.S. 2011. Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair. Mol. Cell. Biol. 31, 4623–4632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maher R.L., Prasad A., Rizvanova O., Wallace S.S., Pederson D.S. 2013. Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes. DNA Repair (Amst.). 12, 964–971.

    Article  CAS  Google Scholar 

  69. Maher R.L., Wallace S.S., Pederson D.S. 2019. The lyase activity of bifunctional DNA glycosylases and the 3'-diesterase activity of APE1 contribute to the repair of oxidized bases in nucleosomes. Nucleic Acids Res. 47, 2922–2931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fromme J.C., Bruner S.D., Yang W., Karplus M., Verdine G.L. 2003. Product-assisted catalysis in base-excision DNA repair. Nat. Struct. Mol. Biol. 10, 204–211.

    Article  CAS  Google Scholar 

  71. Fromme J.C., Verdine G.L. 2003. DNA lesion recognition by the bacterial repair enzyme MutM. J. Biol. Chem. 278, 51543–51548.

    Article  CAS  PubMed  Google Scholar 

  72. Rydberg B., Lindahl T. 1982. Nonenzymatic methylation of DNA by the intracellular methyl group donor S‑adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1, 211–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marnett L.J. 2002. Oxy radicals, lipid peroxidation and DNA damage. Toxicology. 181182, 219–222.

    Article  PubMed  Google Scholar 

  74. Dosanjh M.K., Chenna A., Kim E., Fraenkel-Conrat H., Samson L., Singer B. 1994. All four known cyclic adducts formed in DNA by the vinyl chloride metabolite chloroacetaldehyde are released by a human DNA glycosylase. Proc. Natl. Acad. Sci. U. S. A. 91, 1024–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rydberg B., Qiu Z.H., Dosanjh M.K., Singer B. 1992. Partial purification of a human DNA glycosylase acting on the cyclic carcinogen adduct 1,N6-ethenodeoxyadenosine. Cancer Res. 52, 1377–1179.

    CAS  PubMed  Google Scholar 

  76. O’Brien P.J., Ellenberger T. 2004. Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase. J. Biol. Chem. 279, 9750–9757.

    Article  PubMed  CAS  Google Scholar 

  77. O’Connor T.R. 1993. Purification and characterization of human 3-methyladenine-DNA glycosylase. Nucleic Acids Res. 21, 5561–5569.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kennedy E.E., Li C., Delaney S. 2019. Global repair profile of human alkyladenine DNA glycosylase on nucleosomes reveals DNA packaging effects. ACS Chem. Biol. 14, 1687–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang Y. 2008. Bulky DNA lesions induced by reactive oxygen species. Chem. Res. Toxicol. 21, 276–281.

    Article  CAS  PubMed  Google Scholar 

  80. Zuo S., Boorstein R.J., Teebor G.W. 1995. Oxidative damage to 5-methylcytosine in DNA. Nucleic Acids Res. 23, 3239–3243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Douki T., Delatour T., Paganon F., Cadet J. 1996. Measurement of oxidative damage at pyrimidine bases in γ-irradiated DNA. Chem. Res. Toxicol. 9, 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  82. Bjelland S., Seeberg E. 2003. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat. Res. 531, 37–80.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Y., Yuan F., Wu X., Taylor J.S., Wang Z. 2001. Response of human DNA polymerase iota to DNA lesions. Nucleic Acids Res. 29, 928–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hanes J.W., Thal D.M., Johnson K.A. 2006. Incorporation and replication of 8-oxo-deoxyguanosine by the human mitochondrial DNA polymerase. J. Biol. Chem. 281, 36241–36248.

    Article  CAS  PubMed  Google Scholar 

  85. Menoni H., Shukla M.S., Gerson V., Dimitrov S., Angelov D. 2012. Base excision repair of 8-oxoG in dinucleosomes. Nucleic Acids Res. 40, 692–700.

    Article  CAS  PubMed  Google Scholar 

  86. Cannan W.J., Tsang B.P., Wallace S.S., Pederson D.S. 2014. Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages. J. Biol. Chem. 289, 19881–19893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hinz J.M., Mao P., McNeill D.R., Wilson D.M. 2015. Reduced nuclease activity of apurinic/apyrimidinic endonuclease (APE1) variants on nucleosomes: Identification of access residues. J. Biol. Chem. 290, 21067–21075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cannan W.J., Rashid I., Tomkinson A.E., Wallace S.S., Pederson D.S. 2017. The human ligase IIIα-XRCC1 protein complex [erforms DNA nick repair after transient unwrapping of nucleosomal DNA. J. Biol. Chem. 292, 5227–5238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee T.H. 2019. Physical chemistry of epigenetics: single-molecule investigations. J. Phys. Chem. B. 123, 8351–8362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li C., Delaney S. 2019. Histone H2A variants enhance the initiation of base excision repair in nucleosomes. ACS Chem. Biol. 14, 1041–1050.

    Article  CAS  PubMed  Google Scholar 

  91. Zlatanova J., Thakar A. 2008. H2A.Z: view from the top. Structure. 16, 166–179.

    Article  CAS  PubMed  Google Scholar 

  92. Billon P., Côté J. 2012. Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. Biochim. Biophys. Acta—Gene Regul. Mech. 1819, 290–302.

    Article  CAS  Google Scholar 

  93. Yu Y., Deng Y., Reed S.H., Millar C.B., Waters R. 2013. Histone variant Htz1 promotes histone H3 acetylation to enhance nucleotide excision repair in Htz1 nucleosomes. Nucleic Acids Res. 41, 9006–9019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bowman G.D., Poirier M.G. 2015. Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev. 115, 2274–2295.

    Article  CAS  PubMed  Google Scholar 

  95. North J.A., Shimko J.C., Javaid S., Mooney A.M., Shoffner M.A., Rose S.D., Bundschuh R., Fishel R., Ottesen J.J., Poirier M.G. 2012. Regulation of the nucleosome unwrapping rate controls DNA accessibility. Nucleic Acids Res. 40, 10215–10227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Michishita E., McCord R.A., Boxer L.D., Barber M.F., Hong T., Gozani O., Chua K.F. 2009. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle. 8, 2664–2666.

    Article  CAS  PubMed  Google Scholar 

  97. Maas N.L., Miller K.M., DeFazio L.G., Toczyski D.P. 2006. Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol. Cell. 23, 109–119.

    Article  CAS  PubMed  Google Scholar 

  98. Rodriguez Y., Horton J.K., Wilson S.H. 2019. Histone H3 lysine 56 acetylation enhances AP endonuclease 1-mediated repair of AP sites in nucleosome core particles. Biochemistry. 58, 3646–3655.

    Article  CAS  PubMed  Google Scholar 

  99. Prasad R., Liu Y., Deterding L.J., Poltoratsky V.P., Kedar P.S., Horton J.K., Kanno S.I., Asagoshi K., Hou E.W., Khodyreva S.N., Lavrik O.I., Tomer K.B., Yasui A., Wilson S.H. 2007. HMGB1 is a cofactor in mammalian base excision repair. Mol. Cell. 27, 829–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bennett S.E., Sanderson R.J., Mosbaugh D.W. 1995. Processivity of Escherichia coli and rat liver mitochondrial uracil-DNA glycosylase is affected by NaCl concentration. Biochemistry. 34, 6109–6119.

    Article  CAS  PubMed  Google Scholar 

  101. Lau A.Y., Wyatt M.D., Glassner B.J., Samson L.D., Ellenberger T. 2000. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase AAG. Proc. Natl. Acad. Sci. U. S. A. 97, 13573–13578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Asahara H., Wistort P.M., Bank J.F., Bakerian R.H., Cunningham R.P. 1989. Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry. https://doi.org/10.1021/bi00436a048

  103. Widlund H.R., Vitolo J.M., Thiriet C., Hayes J.J. 2000. DNA sequence-dependent contributions of core histone tails to nucleosome stability: Differential effects of acetylation and proteolytic tail removal. Biochemistry. 39, 3835–3841.

    Article  CAS  PubMed  Google Scholar 

  104. Yang Z., Zheng C., Hayes J.J. 2007. The core histone tail domains contribute to sequence-dependent nucleosome positioning. J. Biol. Chem. 282, 7930–7938.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. MD-3775.2019.4) and partially supported by budgetary funding (project no. АААА-А17-117020210022-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Fedorova.

Ethics declarations

The authors declare they have no conflicts of interests.

The article contains no studies involving animals or humans as subjects of the study.

Additional information

Translated by N. Onishchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kladova, O.A., Kuznetsov, N.A. & Fedorova, O.S. Initial stages of DNA Base Excision Repair in Nucleosomes. Mol Biol 55, 167–181 (2021). https://doi.org/10.1134/S0026893321020096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020096

Keywords:

Navigation