Skip to main content
Log in

Template Properties of 5-Methyl-2'-Deoxycytidine and 5-Hydroxymethyl-2'-Deoxycytidine in Reactions with Human Translesion and Reparative DNA Polymerases

  • ENZYMOLOGY OF DNA REPAIR SYSTEMS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

5-Methyl-2'-deoxycytidine (mC) and the product of its controlled oxidation, 5-hydroxymethyl-2'-cytidine (hmC), play a key role in the epigenetic regulation of gene expression, the cell differentiation, and the carcinogenesis. Due to spontaneious deamination, genomic CpG sites containing mC and hmC serve as mutagenesis hotspots. In addition, error-prone translesion and reparative DNA polymerases may serve as additional source of mutations in the lesion-containing regions with CpG sites. In the present work, we performed in vitro analysis of the accuracy of nucleotide incorporation opposite to mC and hmC by human DNA polymerases Polβ, Polλ, Polη, Polι, Polκ and primase polymerase PrimPol. The results of the study show a high accuracy of copying mC and hmC by the reparative DNA polymerases Polβ and Polλ, while Polη, Polι, Polκ, and PrimPol copied mC and hmC with less accuracy evident by incorporation of dAMP and dTMP. The same spectrum of error-prone dNMP incorporation was also noted at sites with unmodified cytosines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Weber M., Schübeler D. 2007. Genomic patterns of DNA methylation: Targets and function of an epigenetic mark. Curr. Opin. Cell Biol. 19, 273–280.

    Article  CAS  PubMed  Google Scholar 

  2. Law J.A., Jacobsen S.E. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Szulwach K.E., Jin P. 2014. Integrating DNA methylation dynamics into a framework for understanding epigenetic codes. Bioessays. 36, 107–117.

    Article  CAS  PubMed  Google Scholar 

  4. Jabbari K., Bernardi G. 2004. Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene. 333, 143–149.

    Article  CAS  PubMed  Google Scholar 

  5. Stevens M., Cheng J.B., Li D., Xie M., Hong C., Maire C.L., Ligon K.L., Hirst M., Marra M.A., Costello J.F., Wang T. 2013. Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods. Genome Res. 23, 1541–1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Branco M.R., Ficz G., Reik W. 2011. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat. Rev. Genet. 13, 7–13.

    Article  PubMed  CAS  Google Scholar 

  7. Shen L., Zhang Y. 2013. 5-Hydroxymethylcytosine: Generation, fate, and genomic distribution. Curr. Opin. Cell Biol. 25, 289–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu X., Zhao B.S., He C. 2015. TET family proteins: Oxidation activity, interacting molecules, and functions in diseases. Chem. Rev. 115, 2225–2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu X., Zhang Y. 2017. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534.

    Article  CAS  PubMed  Google Scholar 

  10. Waters T.R., Swann P.F. 2000. Thymine-DNA glycosylase and G to A transition mutations at CpG sites. Mutat. Res. 462, 137–147.

    Article  CAS  PubMed  Google Scholar 

  11. Pfeifer G.P. 2006. Mutagenesis at methylated CpG sequences. Curr. Top. Microbiol. Immunol. 301, 259–281.

    CAS  PubMed  Google Scholar 

  12. Olinski R., Starczak M., Gackowski D. 2016. Enigmatic 5-hydroxymethyluracil: oxidatively modified base, epigenetic mark or both? Mutat. Res. 767, 59–66.

    Article  CAS  Google Scholar 

  13. Kawai K., Wata Y., Hara M., Tojo S., Majima T. 2002. Regulation of one-electron oxidation rate of guanine by base pairing with cytosine derivatives. J. Am. Chem. Soc. 124, 3586–3590.

    Article  CAS  PubMed  Google Scholar 

  14. Denissenko M.F., Pao A., Tang M.-S., Pfeifer G.P. 1996. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 274, 430–432.

    Article  CAS  PubMed  Google Scholar 

  15. Hu W., Feng Z., Tang M.-S. 2003. Preferential carcinogen-DNA adduct formation at codons 12 and 14 in the human K-ras gene and their possible mechanisms. Biochemistry. 42, 10012–10023.

    Article  CAS  PubMed  Google Scholar 

  16. Vairapandi M., Duker H.J. 1994. Excision of ultraviolet-induced photoproducts of 5-methylcytosine from DNA. Mutat. Res. 315, 85–94.

    Article  CAS  PubMed  Google Scholar 

  17. You Y.-H., Li C., Pfeifer G.P. 1999. Involvement of 5‑methylcytosine in sunlight-induced mutagenesis. J. Mol. Biol. 293, 493–503.

    Article  CAS  PubMed  Google Scholar 

  18. Lee D.-H., Pfeifer G.P. 2003. Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis. J. Biol. Chem. 278, 10314–10321.

    Article  CAS  PubMed  Google Scholar 

  19. Tomkova M., McClellan M., Kriaucionis S., Schuster-Böckler B. 2018. DNA replication and associated repair pathways are involved in the mutagenesis of methylated cytosine. DNA Repair (Amst.). 62, 1–7.

    Article  CAS  Google Scholar 

  20. Tomkova M., Schuster-Böckler B. 2018. DNA modifications: Naturally more error prone? Trends Genet. 34, 627–638.

    Article  CAS  PubMed  Google Scholar 

  21. Yamtich J., Sweasy J.B. 2010. DNA polymerase family X: Function, structure, and cellular roles. Biochim. Biophys. Acta. 1804, 1136–1150.

    Article  CAS  PubMed  Google Scholar 

  22. Pata J.D. 2010. Structural diversity of the Y-family DNA polymerases. Biochim. Biophys. Acta. 1804, 1124–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang W. 2014. An overview of Y-family DNA polymerases and a case study of human DNA polymerase η. Biochemistry. 53, 2793–2803.

    Article  CAS  PubMed  Google Scholar 

  24. Makarova A.V., Burgers P.M. 2015. Eukaryotic DNA polymerase ζ. DNA Repair (Amst.). 29, 47–55.

    Article  CAS  Google Scholar 

  25. García-Gómez S., Reyes A., Martínez-Jiménez M.I., Chocrón E.S., Mourón S., Terrados G., Powell C., Salido E., Méndez J., Holt I.J., Blanco L. 2013. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell. 52, 541–553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Belousova E.A., Lavrik O.I. 2010. DNA polymerases beta and lambda, and their roles in the DNA replication and repair. Mol. Biol. (Moscow). 44, 839–855.

    Article  CAS  Google Scholar 

  27. Lindahl T., Barnes D.E. 2000. Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol. 65, 127–133.

    Article  CAS  PubMed  Google Scholar 

  28. Maga G., Villani G., Crespan E., Wimmer U., Ferrari E., Bertocci B., Hübscher U. 2007. 8-Oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature. 447, 606–608.

    Article  CAS  PubMed  Google Scholar 

  29. Makarova A.V., Grabow C., Gening L.V., Tarantul V.Z., Tahirov T.H., Bessho T., Pavlov Y.I. 2011. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota. PLoS One. 6, e16612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Makarova A.V., Stodola J.L., Burgers P.M. 2012. A four-subunit DNA polymerase ζ complex containing Polδ accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res. 40, 11618–11626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Makarova A.V., Nick McElhinny S.A., Watts B.E., Kunkel T.A., Burgers P.M. 2014. Ribonucleotide incorporation by yeast DNA polymerase ζ. DNA Repair (Amst.). 18, 63–67.

    Article  CAS  PubMed Central  Google Scholar 

  32. Boldinova E.O., Stojkovič G., Khairullin R., Wanrooij S., Makarova A.V. 2017. Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol. PLoS One. 12, e0184489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Petrova D.V., Naumenko M.B., Khantakova D.V., Grin I.R., Zharkov D.O. 2019. Relative efficiency of recognition of 5-methylcytosine and 5-hydroxymethylcytosine by methyl-dependent DNA endonuclease GlaI. Russ. J. Bioorg. Chem. 45, 625–629.

    Article  CAS  Google Scholar 

  34. Johnson R.E., Washington M.T., Prakash S., Prakash L. 2000. Fidelity of human DNA polymerase η. J. Biol. Chem. 275, 7447–7450.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y., Yuan F., Wu X., Wang Z. 2000. Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase ι. Mol. Cell. Biol. 20, 7099–7108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y., Yuan F., Xin H., Wu X., Rajpal D.K., Yang D., Wang Z. 2000. Human DNA polymerase κ synthesizes DNA with extraordinarily low fidelity. Nucleic Acids Res. 28, 4147–4156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boldinova E.O., Wanrooij P.H., Shilkin E.S., Wanrooij S., Makarova A.V. 2017. DNA damage tolerance by eukaryotic DNA polymerase and primase PrimPol. Int. J. Mol. Sci. 18, 1584.

    Article  PubMed Central  CAS  Google Scholar 

  38. Poulos R.C., Olivier J., Wong J.W.H. 2017. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic Acids Res. 45, 7786–7795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rogozin I.B., Goncearenco A., Lada A.G., De S., Yurchenko V., Nudelman G., Panchenko A.R., Cooper D.N., Pavlov Y.I. 2018. DNA polymerase η mutational signatures are found in a variety of different types of cancer. Cell Cycle. 17, 348–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tomkova M., Tomek J., Kriaucionis S., Schuster-Böckler B. 2018. Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biol. 19, 129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fang H., Barbour J.A., Poulos R.C., Katainen R., Aaltonen L.A., Wong J.W.H. 2020. Mutational processes of distinct POLE exonuclease domain mutants drive an enrichment of a specific TP53 mutation in colorectal cancer. PLoS Genet. 16, e1008572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A.J.R., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., Børresen-Dale A.-L., Boyault S., Burkhardt B., Butler A.P., Caldas C., Davies H.R., et al. 2013. Signatures of mutational processes in human cancer. Nature. 500, 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alsøe L., Sarno A., Carracedo S., Domanska D., Dingler F., Lirussi L., SenGupta T., Tekin N.B., Jobert L., Alexandrov L.B., Galashevskaya A., Rada C., Sandve G.K., Rognes T., Krokan H.E., Nilsen H. 2017. Uracil accumulation and mutagenesis dominated by cytosine deamination in CpG dinucleotides in mice lacking UNG and SMUG1. Sci. Rep. 7, 7199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. ESCODD (European Standards Committee on Oxidative DNA Damage). 2002. Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Carcinogenesis. 23, 2129–2133.

    Article  Google Scholar 

  45. ESCODD (European Standards Committee on Oxidative DNA Damage), Gedik C.M., Collins A. 2005. Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. FASEB J. 19, 82–84.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to L.V. Gening (Institute of Molecular Genetics) for the Pol κ preparation, O.I. Lavrik (Institute of Chemical Biology and Fundamental Medicine) for the Polλ expression vector, and K.A. Bondarenko for help in Polη purification.

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 17-00-00264-komfi (AVM) and 17-00-00261-komfi (DOZ)). PrimPol activity testing was supported by the Russian Science Foundation (project no. 18-14-00354 (AVM)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. O. Zharkov or A. V. Makarova.

Ethics declarations

The authors declare that they have no conflict of interest. This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: mC, 5-methyl-2'-deoxycytidine; hmC, 5-hydro-xymethyl-2'-deoxycytidine; oxoG, 8-oxo-7,8-dihydro-2'-deoxy-guanosine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilkin, E.S., Petrova, D.V., Poltorachenko, V.A. et al. Template Properties of 5-Methyl-2'-Deoxycytidine and 5-Hydroxymethyl-2'-Deoxycytidine in Reactions with Human Translesion and Reparative DNA Polymerases. Mol Biol 55, 267–272 (2021). https://doi.org/10.1134/S0026893321020138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020138

Keywords:

Navigation