Skip to main content
Log in

Oil Drainage in a Capillary Tube: Experimental and Numerical Study

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we investigate experimentally and numerically the dynamics of the drainage of a transparent capillary tube (radius 0.4 mm). A non-wetting fluid (gas) displaces a wetting fluid (oil). The gas phase is continuously injected at an extremity of the capillary tube (inlet section) at a constant injection-rate \(Q_{inj}\), ranging from 0.1 to 10 ml/h, corresponding to capillary numbers Ca varying between \(5 \cdot 10^{ - 4}\) and \(5 \cdot 10^{ - 2}\). Oil phase, initially filling the tube, leaves the system at the second opened extremity (outlet section).We consider in this work the compressibility of non-wetting fluid (gas), viscous forces in the liquid column, capillary forces and gravity. The effect of several parameters, such as \(Q_{inj}\) j and gravity, on the progress of the gas–liquid interface has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11

Similar content being viewed by others

References

  • Birkholzer, J.T., Zhou, Q., Tsang, C.-F.: Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int. J. Greenh. Gas Control 3, 181–194 (2009)

    Article  Google Scholar 

  • Cox, B.G.: On driving a viscous fluid out of a tube. J. Fluid Mech. 14, 81 (1962)

    Article  Google Scholar 

  • Dentz, M., Tartakovsky, D.M.: Abrupt-interface solution for carbon dioxide injection into porous media. Transp. Porous Media 79, 15–27 (2009)

    Article  Google Scholar 

  • Fallah Abbasi, M., Shokouhmand, H.: Experimental Investigation on Effect of EDL on Heat Transfer of Micro Heat Pipe. Microgravity Sci. Technol. 31, 317–326 (2019)

    Article  Google Scholar 

  • Frette, V., Feder, J., Jossang, T., Meakin, P., Maloy, K.J.: Fast, immiscible fluid-fluid displacement in three dimensional porous media at finite viscosity contrast. Phys. Rev. E 50, 2881–2890 (1994)

  • Fries N.: Capillary Transport Processes in Porous Materials – Experiment and Model, CuvillierVerlagGöttingen (2010)

  • Geistlinger, H., Krauss, G., Lazik, D., Luckner, L.: Direct gas injection into saturated glass beads: transition from incoherent to coherent gas flow pattern. Water Resour. 42, W07403 (2006)

    Google Scholar 

  • Guo, F., Aryana, S.A.: A Microfluidic Study of Immiscible Drainage Two-Phase Flow Regimes in Porous Media. In: Banerjee S., Barati R., Patil S. (eds) Advances in Petroleum Engineering and Petroleum Geochemistry. Conf. Arabian Journal of Geosciences 2018. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham (2019)

  • Lavi, B., Marmur, A., Bachmann, J.: Capillary Extraction. Langmuir 24(5), 1918–1923 (2008)

    Article  Google Scholar 

  • Lenormand, R., Touboul, E., Zarcone, C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988)

    Article  Google Scholar 

  • Li, P., Fan, M., Sun, L., et al.: Numerical Simulation of Bubble Formation in a Co-Flowing Liquid in Microfluidic Chip. Microgravity Sci. Technol. 32, 1–9 (2020)

    Article  Google Scholar 

  • Louriou, C., Ouerfelli, H., Prat, M., Najjari, M., Bennasrallah, S.: Gas Injection in a Liquid Saturated Porous Medium. Influence of Gas Pressurization and Liquid Films, Transp. Porous Media 91(1), 153–171 (2012)

  • Louriou, C.: Modélisation instationnaire des transferts de masse et de chaleur au sein des évaporateurs capillaires. PhD thesis (in French), INPT (2010)

  • Lucas R.: Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flussigkeiten, KolloidZeitshrift 23, 15–22 (1918)

  • Masoodi, R., Pillai, K.M.: A general formula for capillary section-pressure in porous media. J. Porous Media 15(8), 775–783 (2012)

    Article  Google Scholar 

  • Masoodi, R., Pillai, K.M., Varanasi, P.P.: Role of hydraulic and capillary radii in improving the effectiveness of capillary model in wicking, ASME Summer Conference, Jacksonville, FL, USA, August, 0–14 (2008)

  • Melean, Y., Broseta, D., Blossey, R.: Imbibition fronts in porous media: effects of initial wetting fluid saturation and flow rate. J. Petrol. Sci. Eng. 39, 327–336 (2003)

    Article  Google Scholar 

  • Misra, J.C., Mallick, B., Steinmann, P.: Temperature distribution and entropy generation during Darcy–Forchheimer–Brinkman electrokinetic flow in a microfluidic tube subject to a prescribed heat flux. Meccanica 55, 1079–1098 (2020)

    Article  MathSciNet  Google Scholar 

  • Nishikawara, M., Ueda, Y., Yanada, H.: Static and Dynamic Liquid-Vapor Phase Distribution in the Capillary Evaporator of a Loop Heat Pipe. Microgravity Sci. Technol. 31, 61–71 (2019)

  • Ouerfelli, H., Najjari, M., Bouab, Z., Ben Nasrallah S.: Experimental study of the influence of gravity and injection gas flow rate on drainage in two-dimensional porous media, J. Porous Media 11(8), 781–789 (2008)

  • Prokopev, S., Vorobev, A., Lyubimova, T.: Phase-field modeling of an immiscible liquid-liquid displacement in a capillary. Phys. Rev. E 99, 033113 (2019)

    Article  Google Scholar 

  • Serizawa, A., Feng, Z., Kawara, Z.: Two-phase flow in micro-channels. Exp. Therm. Fluid Sci. 26, 703–714 (2002)

    Article  Google Scholar 

  • Stange, M., Dreyer, M.E., Rath, H.J.: Capillary driven flow in circular cylindrical tubes. Phys. Fluids 15(9), 2587–2601 (2003)

    Article  Google Scholar 

  • Stark, J., Manga, M.: The motion of long bubbles in a network of tubes. Transp. Porous Media 40, 201–218 (2000)

    Article  Google Scholar 

  • Taylor, G.I.: Deposition of a viscous fluid on the wall of a tube. J. Fluid Mech. 10, 161 (1961)

    Article  Google Scholar 

  • Tiwari, A., Chauhan, S.S.: Effect of varying viscosity on a two-layer model of the blood flow through porous blood vessels. Eur. Phys. J. Plus 134, 41 (2019)

    Article  Google Scholar 

  • Vilarrasa, V., Bolster, D., Dentz, M., Olivella, S., Carrera, J.: Effects of CO2 Compressibility on CO2 Storage in Deep Saline Aquifers. Transp. Porous Media 85(2), 619–639 (2010)

    Article  Google Scholar 

  • Vorobev, A., Prokopev, S., Lyubimov, T.: Phase-field modelling of a liquid/liquid immiscible displacement through a network of capillaries. J. Comput. Phys. 421, 109747 (2020)

    Article  MathSciNet  Google Scholar 

  • Walls, P.L.L., Dequidt, G., Bird, J.C.: Capillary Displacement of Viscous Liquids. Langmuir 32(13), 3186–3190 (2016)

    Article  Google Scholar 

  • Wang, T., Li, H.X., Zhao, J.F., Guo, K.K.: Numerical simulation of quasistatic bubble formation from a submerged orifice by the axisymmetric VOSET method. Microgravity Sci. Technol. 31, 1–14 (2019)

    Article  Google Scholar 

  • Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Najjari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khemili, F., Bahrini, I. & Najjari, M. Oil Drainage in a Capillary Tube: Experimental and Numerical Study. Microgravity Sci. Technol. 33, 33 (2021). https://doi.org/10.1007/s12217-021-09882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-021-09882-8

Keywords

Navigation