Skip to main content
Log in

Integrated Analysis of Coding Genes and Non-coding RNAs Associated with Shell Color in the Pacific Oyster (Crassostrea gigas)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Molluscan shell color polymorphism is important in genetic breeding, while the molecular information mechanism for shell coloring is unclear. Here, high-throughput RNA sequencing was used to compare expression profiles of coding and non-coding RNAs (ncRNAs) from Pacific oyster Crassostrea gigas with orange and black shell, which were from an F2 family constructed by crossing an orange shell male with a black shell female. First, 458, 13, and 8 differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified, respectively. Functional analysis suggested that the DEGs were significantly enriched in 9 pathways including tyrosine metabolism and oxidative phosphorylation pathways. Several genes related to melanin synthesis and biomineralization expressed higher whereas genes associated with carotenoid pigmentation or metabolism expressed lower in orange shell oyster. Then, based on the ncRNA analysis, 163 and 20 genes were targeted by 13 and 8 differentially expressed lncRNAs (DELs) and miRNAs (DEMs), severally. Potential DELs-DEMs-DEGs interactions were also examined. Seven DEMs-DEGs pairs were detected, in which tyrosinase-like protein 1 was targeted by lgi-miR-133-3p and lgi-miR-252a and cytochrome P450 was targeted by dme-miRNA-1-3p. These results revealed that melanin synthesis-related genes and miRNAs-mRNA interactions functioned on orange shell coloration, which shed light on the molecular regulation of shell coloration in marine shellfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

tyr1 :

Tyrosinase-like protein 1

sfrp3 :

Secreted frizzled-related protein 3

calm1 :

Neo-calmodulin-like

CYP450 :

Cytochrome P450

cox19 :

Cytochrome c oxidase assembly protein COX19-like

coa7 :

Cytochrome c oxidase assembly factor 7-like

timp3 :

Metalloproteinase inhibitor 3-like

fib :

Nacrein-like protein isoform X1

rpl24 :

60S ribosomal protein L24

RBP4 :

Retinol-binding protein 4

RAR :

Retinoic acid receptor

LDLR :

Low-density lipoprotein receptor

SLC :

Solute carrier

References

  • Aguilera F, McDougall C, Degnan BM (2014) Evolution of the tyrosinase gene family in bivalve molluscs: independent expansion of the mantle gene repertoire. Acta Biomater 10:3855–3865

    Article  CAS  PubMed  Google Scholar 

  • Alfnes F, Guttormsen AG, Steine G, Kolstad K (2006) Consumers’ willingness to pay for the color of salmon: a choice experiment with real economic incentives. Am J Agric Econ 88:1050–1061

    Article  Google Scholar 

  • Andrews S (2010) FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. 21 June 2020

  • Auffret P, Le Luyer J, Sham Koua M, Quillien V, Ky CL (2020) Tracing key genes associated with the Pinctada margaritifera albino phenotype from juvenile to cultured pearl harvest stages using multiple whole transcriptome sequencing. BMC Genom 21:662

    Article  CAS  Google Scholar 

  • Azlan A, Obeidat SM, Yunus MA, Azzam M (2019) Systematic identification and characterization of Aedes aegypti long noncoding RNAs (lncRNAs). Sci Rep 9:12147

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai ZY, Zheng HF, Lin JY, Wang GL, Li GL (2013) Comparative analysis of the transcriptome in tissues secreting purple and white nacre in the pearl mussel Hyriopsis cumingii. PLoS One 8:e53617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56–58

    Article  CAS  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinnl JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CJ, Chen H, Zhang Y, Thomas H, Frank MH, He YH, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li QB, Wang J, Guo X, Jiang XR, Ren ZJ, Weng CY, Sun GX, Wang XQ, Liu YP, Ma LJ, Chen JY, Wang J, Zen K, Zhang JF, Zhang CY (2009) Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol 10:R78

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen XJ, Bai ZY, Li JL (2019) The mantle exosome and microRNAs of Hyriopsis cumingii involved in nacre color formation. Mar Biotechnol 21:634–642

    Article  CAS  Google Scholar 

  • Ding J, Zhao L, Chang YQ, Zhao WM, Du ZL, Hao ZL (2015) Transcriptome sequencing and characterization of Japanese Scallop Patinopecten yessoensis from different shell color lines. PLoS One 10:e0116406

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Y, Zhang LL, Xu F, Huang BY, Zhang GF, Li L (2013) Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR. Fish Shellfish Immunol 34:939–945

    Article  CAS  PubMed  Google Scholar 

  • Ekstro EJ, Sherwood V, Andersson T (2011) Methylation and loss of secreted frizzled-related protein 3 enhances melanoma cell migration and invasion. PLoS One 6:e18674

    Article  Google Scholar 

  • Evans S, Camara MD, Langdon CJ (2009) Heritability of shell pigmentation in the Pacific oyster, Crassostrea gigas. Aquaculture 286:211–216

    Article  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69

    Article  Google Scholar 

  • Feng DD, Li Q, Yu H, Zhao XL, Kong LF (2015) Comparative transcriptome analysis of the Pacific Oyster Crassostrea gigas characterized by shell colors: identification of genetic bases potentially involved in pigmentation. PLoS One 10:e0145257

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng DD, Li Q, Yu H, Kong LF, Du SJ (2018) Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Sci Rep 8:1436

  • Feng DD, Li Q, Yu H, Liu SK, Kong LF, Du SJ (2020) Integrated analysis of microRNA and mRNA expression profiles in Crassostrea gigas to reveal functional miRNA and miRNA-targets regulating shell pigmentation. Sci Rep 10:20238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han ZQ, Li Q (2020) Mendelian inheritance of orange shell color in the Pacific oyster Crassostrea gigas. Aquaculture 516:734616

    Article  Google Scholar 

  • Han ZQ, Li Q, Liu SK, Yu H, Kong LF (2019) Genetic variability of an orange-shell line of the Pacific oyster Crassostrea gigas during artificial selection inferred from microsatellites and mitochondrial COI sequences. Aquaculture 508:159–166

    Article  CAS  Google Scholar 

  • Hines HM, Witkowski P, Wilson JS, Wakamatsu K (2017) Melanic variation underlies aposematic color variation in two hymenopteran mimicry systems. PLoS One 12:1-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Song H, Yang MJ, Yu ZL, Zhou C, Wang XL, Zhang T (2019) Transcriptome analysis of shell color-related genes in the hard clam Mercenaria mercenaria. Comp Biochem Physiol Part D Genomics Proteomics 31:100598

    Article  CAS  PubMed  Google Scholar 

  • Huang XD, Dai JG, Lin KT, Liu M, Ruan HT, Zhang H, Liu WG, He MX, Zhao M (2018) Regulation of IL-17 by lncRNA of IRF-2 in the pearl oyster. Fish Shellfish Immunol 81:108–112

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357-U121

  • Kobayashi T, Kawahara I, Hasekura O, Kijima A (2004) Genetic control of bluish shell color variation in the Pacific abalone, Haliotis discus hannai. J Shellfish Res 23:1153–1156

    Google Scholar 

  • Langmeada B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357-U54

    Article  Google Scholar 

  • Lemer S, Saulnier D, Gueguen Y, Planes S (2015) Identification of genes associated with shell color in the black-lipped pearl oyster, Pinctada margaritifera. BMC Genom 16:568–582

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo MK, Wang LM, Yin HR, Zhu WB, Fu JJ, Dong ZJ (2019) Integrated analysis of long non-coding RNA and mRNA expression in different colored skin of koi carp. BMC Genet 20:515

    Article  Google Scholar 

  • Mann K, Jackson DJ (2014) Characterization of the pigmented shellforming proteome of the common grove snail Cepaea nemoralis. BMC Genom 15:249

    Article  Google Scholar 

  • Mundy NI, Stapley J, Bennison C, Tucker R, Twyman HL, Kim KW, Burke T, Birkhead TR, Andersson S, Slate J (2016) Red carotenoid coloration in the zebra finch is controlled by a cytochrome P450 gene cluster. Curr Biol 26:1435–1440

    Article  CAS  PubMed  Google Scholar 

  • Nie HT, Jiang KY, Li N, Jahan KF, Jiang LW, Huo ZM, Yan XW (2020) Transcriptome analysis reveals the pigmentation-related genes in two shell color strains of the Manila clam Ruditapes philippinarum. Anim Biotechnol 1–12

  • Orteu A, Jiggins CD (2020) The genomics of coloration provides insights into adaptive evolution. Nat Rev Genet 21:461–475

    Article  CAS  PubMed  Google Scholar 

  • Ørom U, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang QH, Guigo R, Shiekhattar R (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) Stringtie enables improved reconstruction of a transcriptome from rNA-seq reads. Nat Biotechnol 33:290–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saenko S, Schilthuizen M (2021) Evo-devo of shell colour in gastropods and bivalves. Curr Opin Genet Dev 69:1–5

    Article  CAS  PubMed  Google Scholar 

  • Song JL, Wang CD (2019) Transcriptomic and proteomic analyses of genetic factors influencing adductor muscle coloration in QN Orange scallops. BMC Genom 20:363

    Article  Google Scholar 

  • Starega-Roslan J, Galka-Marciniak P, Krzyzosiak WJ (2015) Nucleotide sequence of miRNA precursor contributes to cleavage site selection by Dicer. Nucleic Acids Res 43:10939–10951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Luo HT, Bu DC, Zhao GG, Yu KT, Zhang CH, Liu YN, Chen RS, Zhao Y (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41:e166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XJ, Liu ZH, Zhou LQ, Wu B, Dong YH, Yang AG (2016) Integration of next generation sequencing and EPR analysis to uncover molecular mechanism underlying shell color variation in scallops. PLoS One 11:e0161876

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarailo-Graovac M, Chen NS (2009) Using repeatMasker to identify UNIT 4.10 repetitive elements in genomic sequences. Curr Protoc Bioinformatics 25(1):4–10

  • Tian X, Pang XL, Wang LY, Li MG, Dong CJ, Ma X, Wang L, Song DY, Feng JX, Xu P, Li XJ (2018) Dynamic regulation of mRNA and miRNA associated with the developmental stages of skin pigmentation in Japanese ornamental carp. Gene 666:32–43

    Article  CAS  PubMed  Google Scholar 

  • Vidigal JA, Ventura A (2015) The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 25:137–147

    Article  CAS  PubMed  Google Scholar 

  • Wang CD, Liu B, Liu X, Ma B, Zhao YM, Zhao X, Liu FQ, Liu GL (2017) Selection of a new scallop strain, the Bohai Red, from the hybrid between the bay scallop and the Peruvian scallop. Aquaculture 479:250–255

    Article  Google Scholar 

  • Wang LG, Park HJ, Dasari S, Wang SQ, Kocher JP, Li W (2013) CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LM, Zhu WB, Dong ZJ, Song FB, Dong JJ, Fu JJ (2018) Comparative microRNA-seq analysis depicts candidate miRNAs involved in skin color differentiation in Red Tilapia. Int J Mol Sci 19:1209

    Article  PubMed Central  Google Scholar 

  • Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Petersonb KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68

    Article  CAS  PubMed  Google Scholar 

  • Williams ST (2017) Molluscan shell colour. Biol Rev 92:1039–1058

    Article  PubMed  Google Scholar 

  • Winkler F, Estevez B, Jollan L, Garrido J (2001) Inheritance of the general shell color in the scallop Argopecten purpuratus (Bivalvia: Pectinidae). J Hered 91:521–525

    Article  Google Scholar 

  • Xu M, Huang J, Shi Y, Zhang H, He MX (2019) Comparative transcriptomic and proteomic analysis of yellow shell and black shell pearl oysters. Pinctada fucata martensii BMC Genom 20:469

    Article  Google Scholar 

  • Yano M, Nagai K, Morimoto K, Miyamoto H (2006) Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol 144:254–262

    Article  PubMed  Google Scholar 

  • Yin HR, Luo MK, Luo WT, Wang LM, Zhu WB, Fu JJ, Dong ZJ (2020) MiR-196a regulates the skin pigmentation of koi carp (Cyprinus carpio L.) by targeting transcription factor mitfa. Aquac Res 52:229–236

    Article  Google Scholar 

  • Yu SG, Wang G, Liao J, Tang M, Chen J (2020) Identification of key microRNAs affecting melanogenesis of breast muscle in Muchuan black-boned chickens by RNA sequencing. Br Poult Sci 6:225–231

    Article  Google Scholar 

  • Yu WC, He C, Cai ZQ, Xu F, Wei L, Chen J, Jiang QY, Wei N, Li Z, Guo W, Wang XT (2017) A preliminary study on the pattern, the physiological bases and the molecular mechanism of the adductor muscle scar pigmentation in Pacific oyster Crassostrea gigas. Front Physiol 8:699

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang HK, Tan K, Li SK, Ma HY, Zheng HP (2021) The functional roles of the non-coding RNAs in molluscs. Gene 768:145300

    Article  CAS  Google Scholar 

  • Zheng Z, Huang RL, Tian RR, Jiao Y, Du XD (2016) Pm-miR-133 hosting in one potential lncRNA regulates RhoA expression in pearl oyster Pinctada martensii. Gene 591:484–489

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Xiong XW, Zhang JH, Lv SJ, Jiao Y, Deng YW (2019) The global effects of PmRunt co-located and co-expressed with a lincRNA lncRunt in pearl oyster Pinctada fucata martensii. Fish Shellfish Immunol 91:209–215

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Chen JH, Li ZZ, Li XX, Hu XD, Huang Y, Zhao XK, Liang CZ, Wang Y, Sun L, Shi M, Xu XH, Shen F, Chen MS, Han ZJ, Peng ZY, Zhai QN (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on xq27.3 associate with clear cell renal cell carcinoma. Plos One 5:e15224

  • Zhu XJ, Chen Y, Zhang Z, Zhao SY, Xie LP, Zhang RQ (2020) A species-specific miRNA participates in biomineralization by targeting CDS regions of Prisilkin-39 and ACCBP in Pinctada fucata. Sci Rep 10:8971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grants from National Natural Science Foundation of China (31972789 and 31772843), Weihai City (2018NS01), and Industrial Development Project of Qingdao City (20-3-4-16-nsh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, Q., Liu, S. et al. Integrated Analysis of Coding Genes and Non-coding RNAs Associated with Shell Color in the Pacific Oyster (Crassostrea gigas). Mar Biotechnol 23, 417–429 (2021). https://doi.org/10.1007/s10126-021-10034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10034-7

Keywords

Navigation