Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Hydrogel as a Novel Drug Delivery System: Recent Advancements and Patents

Author(s): Ruchi Singh*, Surya Goel, Pankaj Kumar Sharma and Abhinav Agarwal

Volume 17, Issue 1, 2021

Published on: 26 June, 2020

Page: [14 - 25] Pages: 12

DOI: 10.2174/1573413716999200626211915

Price: $65

Abstract

Background: A semisolid gel-like preparation constitutes with the cross-linked polymers, which may easily swell in the presence of water and incorporate the amount of drug substance known as ‘Hydrogel.’

Objective: To prepare the review on the hydrogels, leading ennoblements, classification, mechanism, recent patents, and evaluation parameters.

Methods: This review accrued by taking the help of online and offline journals, books, and other sources. This field includes new developments in the field of inventions in the novel drug delivery of hydrogels.

Results: The impact of the formulation of hydrogels is attracting the focus of the researchers expeditiously because of their nature, three-dimensional structure, compatibility with the other excipients was found enormously useful in the biomedical applications and pharmaceutical industries, less time consuming, better sustained and prolonged the effect. Currently, hydrogels are growing expeditiously for the intensive work done by the use of natural, synthetic, and semi-synthetic polymers for the transformation of hydrophobic and hydrophilic drugs into hydrogels as compared to develop the conventional gels.

Conclusion: The journey of hydrogel goes through with the numerous inventions research papers, reports, publications, and many other sources. The development arouses with the hydrogels in the use of wound dressing, making diapers, contact lens, etc. Nowadays, it is pivotally growing in the field of tissue engineering scaffolds, preparation of hydrophobic drugs into hydrogels, which is a critical challenge in prompt conditions.

Keywords: Injectable hydrogels, oral hydrogels, structural hydrogels, thermosensitive hydrogels, tissue engineering, released mechanism, evaluation parameters.

Graphical Abstract
[1]
Mohite, P.B.; Adhav, S.S. A hydrogels: Methods of preparation and applications. Int. J. Appl. Pharm., 2017, 06, 79-85.
[2]
Muhammad, Z.; Waqar, S.; Sadaf, W.; Rai, M.S.; Asif, M.; Junaid, Q.; Javed, I.; Fazal, R.S.; Muhammad, S.R.; Usman, K. Hydrogel, their applications and polymers used for hydrogel: a review. Int. J. Biol. Pharm. Allied Sci., 2015, 4, 6581-6603.
[3]
Sandeep, C.; Harikumar, S.L. Hydrogels: a smart drug delivery system. Int. J. Res. Pharm. Chem., 2015, 2, 2231-2781.
[4]
Mallikarjuna, C.; Bhaskar, V.H.; Kumar, J.M.; Mounica, R.; Bolla, S.P. Review on hydrogel-A Novel carrier. Pharmatutor, 2014, 2(6), 42-51.
[5]
Verma, A.; Singh, S.; Kaur, R.; Jain, U.K. Topical gels as drug delivery systems: a review. Int. J. Pharm. Sci. Rev. Res., 2013, 23(2), 374-382.
[6]
Raeburn, J.; Mendoza-Cuenca, C.; Cattoz, B.N.; Little, M.A.; Terry, A.E.; Zamith Cardoso, A.; Griffiths, P.C.; Adams, D.J. The effect of solvent choice on the gelation and final hydrogel properties of Fmoc-diphenylalanine. Soft Matter, 2015, 11(5), 927-935.
[http://dx.doi.org/10.1039/C4SM02256D] [PMID: 25516486]
[7]
Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today, 2002, 7(10), 569-579.
[http://dx.doi.org/10.1016/S1359-6446(02)02255-9] [PMID: 12047857]
[8]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf.), 2008, 49(8), 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[9]
Akhtar, M.F.; Hanif, M.; Ranjha, N.M. Methods of synthesis of hydrogel. A review. Saudi Pharm. J., 2016, 24(5), 554-559.
[http://dx.doi.org/10.1016/j.jsps.2015.03.022] [PMID: 27752227]
[10]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[11]
Nagam, S.P.; Jyothi, A.N.; Poojitha, J.; Aruna, S.; Nadendla, R.R. A comprehensive review on hydrogels. Int. J. Curr. Pharm. Res., 2016, 8(1), 19-23.
[12]
Silna, E.; Krishnakumar, K.; Nair, S.K.; Narayanan, A.V.; Dineshkumar, B. Hyrogels in topical drug delivery- A review. Int. J. Innov. Drug Discov., 2016, 6(2), 87-93.
[13]
Mariya, J.; Krishnakumar, K.; Jose, R.; Dineshkumar, B.; Narayanan, A.V. Hydrogels: recent trends in pharmaceutical formulation. J. Pharm. Biol., 2016, 6(2), 86-88.
[14]
Garg, S.; Garg, A. Hydrogel: Classification, properties, preparation and technical features. Asian J. Biomater. Res., 2016, 2(6), 163-170.
[15]
Devi, A.; Nautiyal, U.; Kaur, S.K. Hydrogels: a smart drug delivery device. Asian Pac. J. Health Sci., 2014, 4(1), 92-105.
[http://dx.doi.org/10.21276/apjhs.2014.1.1s.19]
[16]
Zhu, J.; Marchant, R.E. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices, 2011, 8(5), 607-626.
[http://dx.doi.org/10.1586/erd.11.27] [PMID: 22026626]
[17]
Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials, 2010, 31(17), 4639-4656.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.044] [PMID: 20303169]
[18]
Zhang, Y.; Chu, C.C. Thermal and mechanical properties of biodegradable hydrophilic-hydrophobic hydrogels based on dextran and poly (lactic acid). J. Mater. Sci. Mater. Med., 2002, 13(8), 773-781.
[http://dx.doi.org/10.1023/A:1016123125046] [PMID: 15348564]
[19]
Tian, H.; Tang, Z.; Zhuang, X.; Chen, X.; Jing, X. Biodegradable synthetic polymers: Preparation, functionalization, and biomedical application. Prog. Polym. Sci., 2012, 37, 237-280.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.004]
[20]
Chen, C.F.; Huang, L.Y.; Chu, I.M.; Chu, I.M. Controlled release of cyclosporine A from biodegradable amphiphilic diblock copolymer sol-gel drug delivery System. J. Med. Biol. Eng., 2011, 31, 177-183.
[http://dx.doi.org/10.5405/jmbe.756]
[21]
Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000, 50(1), 27-46.
[http://dx.doi.org/10.1016/S0939-6411(00)00090-4] [PMID: 10840191]
[22]
Goyal, A.K.; Rath, G. Nanocarrier system: theories, methods, and applications, 1st ed; Pharma Med, 2018. Available from: https://www.amazon.com/Nano-Carrier-Systems-Theories-Methods-Applications-ebook/dp/B0813Z7DLT
[23]
Rathod; H.J.; Mehta, D.P. A review on pharmaceutical gel. Int. J. Pharma Sci., 2015, 1(1), 33-47.
[24]
Monica, A.; Gautami, J. Design, and evaluation of topical hydrogel formulation of diclofenac sodium for improved therapy. Int. J. Pharm. Sci. Res., 2014, 5(5), 1973-1980.
[25]
Ali, A.; Muhammad, I.N.; Hasan Farid, S.M.; Mushtaque, M. Development and pharmaceutical evaluation of clotrimazole loaded topical hydrogel formulation. Lat. Am. J. Pharm., 2018, 37(4), 675-681.
[26]
Zakaria, A.S.; Afifi, S.A.; Elkhodairy, K.A. Newly developed topical Cefotaxime sodium hydrogels: antibacterial activity and in vivo evaluation. BioMed Res. Int., 2016, 20166525163
[http://dx.doi.org/10.1155/2016/6525163] [PMID: 27314033]
[27]
Kumari, K.; Sara, U.V.S.; Sachdeva, M. Formulation and evaluation of topical hydrogel of mometasone furoate using different polymers. Int. J. Pharm. Chem. Sci., 2013, 2(1), 89-100.
[28]
Sethuraman, N.; Balu, A.; Selvaraj, R.; Johnson, T.; Seetharaman, S. Formulation and characterization of pH based stimuli sensitive based hydrogels for the treatment of ocular infection. J. Young Pharm., 2018, 10(1), 32-36.
[http://dx.doi.org/10.5530/jyp.2018.10.9]
[29]
Liu, M.; Zheng, X. Preparation and assessment of ketamine hydrogels for prolonged transdermal anaesthesia. Trop. J. Pharm., 2017, 16(7), 1481-1487.
[http://dx.doi.org/10.4314/tjpr.v16i7.4]
[30]
Jadhao, U.T.; Tekade, B.W.; Patil, R.; Patil, A.P.; Patil, V.R. Formulation and in-vitro evaluation of oral hydrogel containing miconazole nitrate. Asian J. Pharm. Educ. Res., 2017, 6(4), 57-68.
[31]
Resmi, D.S.; Mathew, P.; Dev, A.P.; Abraham, E. Formulation and evaluation of topical econazole nitrate microsponge loaded hydrogel. Int. J. Pharm. Pharm. Res., 2018, 12(1), 27-64.
[32]
Richter, K.; Thomas, N.; Claeys, J.; McGuane, J.; Prestidge, C.A.; Coenye, T.; Wormald, P.J.; Vreugde, S. A topical hydrogel with deferiprone and gallium-protoporphyrin targets bacterial iron metabolism and has antibiofilm activity. Antimicrob. Agents Chemother., 2017, 61(6), 481-417.
[http://dx.doi.org/10.1128/AAC.00481-17] [PMID: 28396543]
[33]
Carafa, M.; Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Meo, C.; Matricardi, P.; Alhaique, F.; Coviello, T. A new vesicle-loaded hydrogel system suitable for topical applications: preparation and characterization. J. Pharm. Pharm. Sci., 2011, 14(3), 336-346.
[http://dx.doi.org/10.18433/J3160B] [PMID: 21903019]
[34]
Biswas, G.R.; Majee, S.B.; Roy, A. Combination of synthetic and natural polymers in hydrogel: An impact on drug permeation. J. Appl. Pharm. Sci., 2016, 6(11), 158-164.
[http://dx.doi.org/10.7324/JAPS.2016.601125]
[35]
Chen, C.H.; Kuo, C.Y.; Chen, S.H.; Mao, S.H.; Chang, C.Y.; Shalumon, K.T.; Chen, J.P. Thermosensitive injectable hydrogel for simultaneous intraperitoneal delivery of doxorubicin and prevention of peritoneal adhesion. Int. J. Mol. Sci., 2018, 19(5)E1373
[http://dx.doi.org/10.3390/ijms19051373] [PMID: 29734717]
[36]
Venugopalarao, G.; Gowtham, M.S.; Sarada, N.C. Formulation, evaluation and stability studies of hydrogel tablets containing cefditoren pivoxil. J. Pharm. Res., 2013, 7, 230-234.
[http://dx.doi.org/10.1016/j.jopr.2013.03.018]
[37]
Jyothirmai, K.S.L.; Manasa, M.; Sravani, D.; Devi, G.T.S.; Mounika, M.; Priya, N.S.M.; Aruna, S.; Rao, N.R. Formulation and evaluation of ocular in-situ hydrogels of acyclovir. Int. J. Res. Pharm. Chem., 2017, 7(2), 162-170.
[38]
Kurniawansyah, I.S.; Sopyan, I.; Wardhana, Y.W.; Gunasekaran, M. Formulation, and evaluation of chloramphenicol hydrogel ophthalmic preparation. J. Young Pharm., 2018, 10(2), 73-78.
[http://dx.doi.org/10.5530/jyp.2018.2s.14]
[39]
Hani, U.; Shivakumar, H.G.; Gowrav, M.P. Formulation design and evaluation of hydrogel-based metronidazole bioadhesive tablet for vaginal candidiasis. Indian J. Pharm. Sci., 2013, 9(1), 25-37.
[40]
Sandhya, P. Anjum1, B.; Rao Patnaik, K.S.K.; Subrahmanyam, C.V.S. Formulation and evaluation of hydrogel-based oral controlled release tablet of simvastatin. Int. J. Sci. Res. (Ahmedabad), 2013, 3(6), 1-6.
[41]
Johnson, C.T.; Wroe, J.A.; Agarwal, R.; Martin, K.E.; Guldberg, R.E.; Donlan, R.M.; Westblade, L.F.; García, A.J. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc. Natl. Acad. Sci. USA, 2018, 115(22), E4960-E4969.
[http://dx.doi.org/10.1073/pnas.1801013115] [PMID: 29760099]
[42]
Shaghiera, A.D.; Widiyanti, P.; Yusuf, H. Synthesis and characterization of injectable hydrogels with varying Collagen-Chitosan-Thymosin 4 composition for myocardial infarction therapy. J. Funct. Biomater., 2018, 9(2)E33
[http://dx.doi.org/10.3390/jfb9020033] [PMID: 29710844]
[43]
Wang, W.; Narain, R.; Zeng, H. Rational design of self-healing tough hydrogels: a mini-review. Front Chem., 2018, 6, 497.
[http://dx.doi.org/10.3389/fchem.2018.00497] [PMID: 30460224]
[44]
Qin, H.; Zhang, T.; Li, N.; Cong, H.P.; Yu, S.H. Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nat. Commun., 2019, 10(1), 2202.
[http://dx.doi.org/10.1038/s41467-019-10243-8] [PMID: 31101823]
[45]
Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res., 2017, 5, 17014.
[http://dx.doi.org/10.1038/boneres.2017.14] [PMID: 28584674]
[46]
Kim, T.G.; Shin, H.; Lim, D.W. Biomimetic scaffolds for tissue engineering. Adv. Funct. Mater., 2012, 22, 2446-2468.
[http://dx.doi.org/10.1002/adfm.201103083]
[47]
Khan, W.S.; Malik, A. Stem cell therapy and tissue engineering applications for cartilage regeneration. Curr. Stem Cell Res. Ther., 2012, 7(4), 241-242.
[http://dx.doi.org/10.2174/157488812800793063] [PMID: 22563659]
[48]
Grottkau, B.E.; Lin, Y. Osteogenesis of adipose-derived stem cells. Bone Res., 2013, 1(2), 133-145.
[http://dx.doi.org/10.4248/BR201302003] [PMID: 26273498]
[49]
Bush, J.R.; Liang, H.; Dickinson, M.; Botchwey, E.A. Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration. Polym. Adv. Technol., 2016, 27(8), 1050-1055.
[http://dx.doi.org/10.1002/pat.3767] [PMID: 27587941]
[50]
Oh, B.H.; Bismarck, A.; Chan-Park, M.B. Injectable, interconnected, high-porosity macroporous biocompatible gelatin scaffolds made by surfactant-free emulsion templating. Macromol. Rapid Commun., 2015, 36(4), 364-372.
[http://dx.doi.org/10.1002/marc.201400524] [PMID: 25504548]
[51]
Benavides, O.M.; Brooks, A.R.; Cho, S.K.; Petsche Connell, J.; Ruano, R.; Jacot, J.G. In situ vascularization of injectable fibrin/poly(ethylene glycol) hydrogels by human amniotic fluid-derived stem cells. J. Biomed. Mater. Res. A, 2015, 103(8), 2645-2653.
[http://dx.doi.org/10.1002/jbm.a.35402] [PMID: 25631778]
[52]
Nagahama, K.; Takahashi, A.; Ohya, Y. Biodegradable polymers exhibiting temperature-responsive sol-gel transition as injectable biomedical materials. React. Funct. Polym., 2013, 73, 979-985.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2012.11.003]
[53]
Sood, N.; Bhardwaj, A.; Mehta, S.; Mehta, A. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv., 2016, 23(3), 758-780.
[http://dx.doi.org/10.3109/10717544.2014.940091] [PMID: 25045782]
[54]
Lee, P.Y.; Cobain, E.; Huard, J.; Huang, L. Thermosensitive hydrogel PEG-PLGA-PEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound. Mol. Ther., 2007, 15(6), 1189-1194.
[http://dx.doi.org/10.1038/sj.mt.6300156] [PMID: 17406344]
[55]
Wang, C.; Stewart, R.J.; Kopecek, J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature, 1999, 397(6718), 417-420.
[http://dx.doi.org/10.1038/17092] [PMID: 9989405]
[56]
Wang, C.; Zhang, G.; Liu, G.; Hu, J.; Liu, S. Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. J. Control. Release, 2017, 259, 149-159.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.007] [PMID: 27865562]
[57]
Narayanaswamy, R.; Torchilin, V.P. Hydrogels and their applications in targeted drug delivery. Molecules, 2019, 24(3)E603
[http://dx.doi.org/10.3390/molecules24030603] [PMID: 30744011]
[58]
Huang, Y.; Leobandung, W.; Foss, A.; Peppas, N.A. Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J. Control. Release, 2000, 65(1-2), 63-71.
[http://dx.doi.org/10.1016/S0168-3659(99)00233-3] [PMID: 10699271]
[59]
Ichikawa, M.; Kato, T.; Kawahara, M.; Watanabe, S.; Kayano, M. A new multiple-unit oral floating dosage system. II: In vivo evaluation of floating and sustained-release characteristics with p-aminobenzoic acid and isosorbide dinitrate as model drugs. J. Pharm. Sci., 1991, 80(12), 1153-1156.
[http://dx.doi.org/10.1002/jps.2600801212] [PMID: 1815074]
[60]
Leung, S.H.; Irons, B.K.; Robinson, J.R. Polyanionic hydrogel as a gastric retentive system. J. Biomater. Sci. Polym. Ed., 1993, 4(5), 483-492.
[http://dx.doi.org/10.1163/156856293X00140] [PMID: 8241064]
[61]
Stops, F.; Fell, J.T.; Collett, J.H.; Martini, L.G. Floating dosage forms to prolong gastro-retention--the characterisation of calcium alginate beads. Int. J. Pharm., 2008, 350(1-2), 301-311.
[http://dx.doi.org/10.1016/j.ijpharm.2007.09.009] [PMID: 17964096]
[62]
Omidian, H.; Park, K.; Rocca, J.G. Recent developments in superporous hydrogels. J. Pharm. Pharmacol., 2007, 59(3), 317-327.
[http://dx.doi.org/10.1211/jpp.59.3.0001] [PMID: 17331335]
[63]
Lavanya, P.; Rajeswari, K.R.; Ramesh, B. Formulation and evaluation of modified release oral hydrogel beads of an antidiabetic drug. World J. Pharm. Pharm. Sci., 2014, 3(3), 2134-2142.
[64]
Sharma, P.K.; Asthana, G.S.; Asthana, A. Formulation development and evaluation of hydrogel-based gastro retentive drug delivery system of antihypertensive drug. Int. J. Pharm. Clin. Res., 2016, 8(10), 1396-1401.
[65]
Ma, S.; Yu, B.; Pei, X.; Zhou, F. Structural hydrogels. Polymer (Guildf.), 2016, 98, 516-535.
[http://dx.doi.org/10.1016/j.polymer.2016.06.053]
[66]
Lonov, L. Biometric hydrogel-based actuating system. Adv. Funct. Mater., 2013, 23(36), 4555-4570.
[http://dx.doi.org/10.1002/adfm.201203692]
[67]
Ishii, K. Synthesis of microgels and their application to coatings. Colloids Surf. A Physicochem. Eng. Asp., 1999, 153(1), 591-595.
[http://dx.doi.org/10.1016/S0927-7757(98)00481-6]
[68]
Hoare, T.R.; Kohane, D.S. Hydrogel in drug delivery: progress and challenges. Polymer (Guildf.), 2008, 49(8), 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[69]
Ma, S.; Scaraggi, M.; Wang, D.; Wang, X.; Liang, Y.; Liu, W.; Dini, D.; Zhou, F. Nanoporous substrate‐infiltrated hydrogels: a bioinspired regenerable surface for high load bearing and tunable friction. Adv. Funct. Mater., 2015, 25(47), 7366-7374.
[http://dx.doi.org/10.1002/adfm.201503681]
[70]
Bertassoni, L.E.; Cecconi, M.; Manoharan, V.; Nikkhah, M.; Hjortnaes, J.; Cristino, A.L.; Barabaschi, G.; Demarchi, D.; Dokmeci, M.R.; Yang, Y.; Khademhosseini, A. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip, 2014, 14(13), 2202-2211.
[http://dx.doi.org/10.1039/C4LC00030G] [PMID: 24860845]
[71]
Therriault, D.; White, S.R.; Lewis, J.A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater., 2003, 2(4), 265-271.
[http://dx.doi.org/10.1038/nmat863] [PMID: 12690401]
[72]
Himi, M.; Maurya, S.D. Preparation and evaluation of stomach specific ipn hydrogels for oral drug delivery: a review. J. Drug Deliv. Ther., 2013, 3(2), 131-140.
[73]
Hersel, U.; Rau, H.; Schnepf, R.; Vetter, D.; Wegge, T. Hydrogel formulations. US 2012/0238625 A1, August 27, 2015.
[74]
Sannino, A.; Ambrosio, L.; Nicolais, L.; Demitri, C. Polymer hydrogels and methods of preparation thereof. US 8,658,147 B2, February 25, 2014.
[75]
Venkatraman, S.S.; Murdock, T.O.; Pudjijanto, S. Pharmaceutical hydrogel formulations, and associated drug delivery devices and methods. US6039977A, March 21, 2000.
[76]
Dutta, J.; Ghosh, D.; Majumdar, A. S.; Dwivedi, G.; Viswanathan, C. Hydrogel composition. WO2010067378A2, June 17 2010.
[77]
Lorenz, D. Skin adhesive hydrogel, its preparation, and uses. EP0625034B1, June 23, 1994.
[78]
Omidian, H.; Qiu, Y.; Yang, S.; Kim, D.; Park, H.; Park, K. Hydrogels having enhanced elasticity and mechanical strength properties. WO2003089506A1, October 23 2003.
[79]
Haraguchi, K.; Kuroki, K. Nondrying polymer hydrogel. US9382401B2, July 5, 2016.
[80]
Preparing biodegradable hydrogel for biomedical application. WO2010083039A1, July 22, 2010.https://patents.google.com/patent/WO2010083039A1/en?oq=Preparing+biodegradable+hydrogel+for+biomedical+application
[81]
Omidian, H.; Qiu, Y.; Yang, S.; Kim, D.; Park, H.; Park, K. Hydrogels having enhanced elasticity and mechanical strength properties. US6960617B2, November 12, 005.
[82]
Deschepper, M.; Petite, H.; Avramoglou, D.L.; Paquet, J.; Pauthe, E.; Bidault, L.; Garde, V.L. Time-controlled glucose releasing hydrogels and applications thereof. EP3011952A1, April 27, 2016.https://patents.google.com/patent/EP3011952A1/en?oq=Time-controlled+glucose+releasing+hydrogels+and+applications+thereof
[83]
Ganesh, T.A.; Manohar, S.D.; Bhanudas, S.R. Hydrogel- a novel technique for preparation of topical gel. World J. Pharm. Pharm. Sci., 2013, 2(6), 4520-4541.
[84]
Vibhute Patil, V.P.; Hajare, A.A. Preparation and characterization of super-porous hydrogels as gastroretentive drug delivery for atenolol. Int. J. Pharm. Sci. Res., 2019, 10(1), 272-285.
[85]
Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels, 2017, 3(1), 6.
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[86]
Mishra, B.; Upadhyay, M.; Reddy Adena, S.K.; Vasant, B.G.; Muthu, M.S. Hydrogels: An introduction to a controlled drug delivery device, synthesis, and application in drug delivery and tissue engineering. Austin J. Biomed. Eng., 2017, 4(1), 1037.
[87]
Bindu, S.M.; Ashok, V.; Chatterjee, A. As a review on hydrogels as drug delivery in the pharmaceutical field. Int. J. Pharm. Chem. Sci., 2012, 1(2), 642-661. Available from: https://www.researchgate.net/publication/224319682_As_A_Review_on_Hydrogels_as_Drug_Delivery_in_the_Pharmaceutical_Field
[88]
Joshi, S.; Vig, K.; Singh, S.R. Advanced hydrogels for biomedical application. Biomed. J. Sci. Tech. Res., 2018, 5(1), 4302-4306.
[89]
Morishita, M.; Goto, T.; Nakamura, K. Low¬man, A.M.; Takayama, K.; Peppas, N.A. Novel oral insulin delivery systems based on complexation polymer hydrogels: Single and multiple adminis¬tration studies in type 1 and 2 diabetic rats. J. Control. Release, 2006, 110(3), 587-594.
[http://dx.doi.org/10.1016/j.jconrel.2005.10.029] [PMID: 16325951]
[90]
Ghasemiyeh, P.; Mohammadi-Samani, S. Hydrogels as a drug delivery system; prons and cons. Trends Pharmacol. Sci., 2019, 5(1), 7-24.
[91]
Larrañeta, E.; Stewart, S.; Ervine, M.; Al-Kasasbeh, R.; Donnelly, R.F. Hydrogels for hydrophobic drug delivery, classification, synthesis, and application. J. Funct. Biomater., 2018, 9(1)E13
[http://dx.doi.org/10.3390/jfb9010013] [PMID: 29364833]
[92]
Elstad, N.L.; Fowers, K.D. OncoGel (ReGel/paclitaxel)--clinical applications for a novel paclitaxel delivery system. Adv. Drug Deliv. Rev., 2009, 61(10), 785-794.
[http://dx.doi.org/10.1016/j.addr.2009.04.010] [PMID: 19422870]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy