Skip to main content
Log in

Dynamics of Biological Activity and Water-Soluble Organic Matter in Tundra Soils on Slopes of Different Aspects in the Khibiny Mountains

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

The dynamics of the content and properties of water-soluble organic matter and the biological activity of soils of dwarf-shrub heath and graminoid meadow of alpine tundra on slopes of different aspects are estimated. The variation of most of the studied parameters during the growing season is revealed, which confirms the importance of dynamic observations in assessing the role of soils in changing environment. Soils on the southwestern slope are characterized by higher mean daily temperatures and lower water contents throughout the entire growing season. Despite this, slope aspect does not affect the content of water-soluble organic matter and the potential respiratory activity of soil microorganisms. At the same time, under warmer and drier conditions, the organic matter of alpine tundra soils is less resistant to microbiological transformation. The natural gradient of soil temperature and moisture does not significantly affect the efficiency of using carbon sources and the overall functioning of microbial communities. Based on the data obtained, it is predicted that the adaptation of the soil microbial community to a gradual rise in temperatures in the Subarctic region should proceed without a sharp increase in the rate of mineralization of soil organic matter by microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. D. Ananyeva, Microbiological Aspects of Self-Purification and Tolerance of Soils (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  2. E. V. Blagodatskaya, N. D. Ananyeva, and T. N. Myakshina, “Characteristics of soil microbial community by metabolic quotient,” Pochvovedenie, No. 2, 205–210 (1995).

    Google Scholar 

  3. I. S. Buzin, M. I. Makarov, T. I. Malysheva, M. S. Kadulin, N. E. Koroleva, and M. N. Maslov, “Transformation of nitrogen compounds in soils of mountain tundra ecosystems in the Khibiny,” Eurasian Soil Sci. 52, 518–525 (2019). https://doi.org/10.1134/S1064229319030025

    Article  Google Scholar 

  4. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  5. M. I. Makarov, T. I. Malysheva, O. S. Mulyukova, and O. V. Menyailo, “Freeze-thaw effect on the processes of transformation of carbon and nitrogen compounds in alpine meadow soils,” Russ. J. Ecol. 46, 317–324 (2015).

    Article  Google Scholar 

  6. M. N. Maslov, O. A. Maslova, L. A. Pozdnyakov, and E. I. Kopeina, “Biological activity of soils in mountain tundra ecosystems under postpyrogenic restoration,” Eurasian Soil Sci. 51, 692–700 (2018).https://doi.org/10.1134/S1064229318060108

    Article  Google Scholar 

  7. M. N. Maslov, O. A. Maslova, and O. A. Tokareva, “Changes in labile and microbial pools of carbon and nitrogen in forest litter samples under different methods of storage,” Eurasian Soil Sci. 52, 747–755 (2019). https://doi.org/10.1134/S106422931907010X

    Article  Google Scholar 

  8. M. N. Maslov, O. A. Maslova, and E. I. Kopeina, “Biochemical stability of water-soluble organic matter in tundra soils of the Khibiny Mountains during postfire succession,” Eurasian Soil Sci. 54, 316–324 (2021).

    Article  Google Scholar 

  9. M. N. Maslov and M. I. Makarov, “Organic matter of the soil of the mountain tundra in North Fennoscandia,” Moscow Univ. Soil Sci. Bull. 68, 99–103 (2013).

    Article  Google Scholar 

  10. M. N. Maslov and M. I. Makarov, “Transformation of nitrogen compounds in the tundra soils of Northern Fennoscandia,” Eurasian Soil Sci. 49, 757–764 (2016). https://doi.org/10.1134/S1064229316070073

    Article  Google Scholar 

  11. V. N. Pereverzev, “Genetic features of soils in altitudinal natural zones of the Khibiny Mountains,” Eurasian Soil Sci. 43, 509–518 (2010).

    Article  Google Scholar 

  12. E. V. Shamrikova, S. V. Deneva, O. S. Kubik, and A. N. Panjukov, “Nitrogen compounds in the soil of the continental margins of the European Russian Arctic,” Eurasian Soil Sci. 53, 870–881 (2020). https://doi.org/10.1134/S1064229320070133

    Article  Google Scholar 

  13. N. Yu. Shmakova, G. I. Ushakova, and V. I. Kostyuk, Mountain-Tundra Communities of Kola Subarctic: Ecological-Physiological Aspect (Apatity, 2008) [in Russian].

  14. T. H. Anderson and K. H. Domsch, “The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soil,” Soil Biol. Biochem. 25, 393–395 (1993).

    Article  Google Scholar 

  15. O. A. Anisimov, D. G. Vaughan, T. V. Callaghan, C. Furgal, H. Marchant, T. D. Prowse, H. Vilhjalmsson, and J. E. Walsh, “Polar regions (Arctic and Antarctic),” in Climate Change 2007: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge, 2007), pp. 653–685.

  16. W. D. Billings, “Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future,” Quat. Sci. Rev. 6, 165–177 (1987).

    Article  Google Scholar 

  17. P. C. Brookes, A. Landman, G. Pruden, and D. S. Jenkinson, “Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil,” Soil Biol. Biochem. 17, 837–842 (1985).

    Article  Google Scholar 

  18. K. M. Buckeridge, S. Banerjee, S. D. Siciliano, and P. Grogan, “The seasonal pattern of soil microbial community structure in mesic low arctic tundra,” Soil Biol. Biochem. 65, 338–347 (2013). https://doi.org/10.1016/j.soilbio.2013.06.012

    Article  Google Scholar 

  19. T. V. Callaghan, F. Bergholm, T. R. Christensen, C. Jonasson, U. Kokfelt, and M. Johansson, “New climate era in the sub-Arctic: accelerating climate changes and multiple impacts,” Geophys. Res. Lett. 37, 1–6 (2010). https://doi.org/10.1029/2009GL042064

    Article  Google Scholar 

  20. F. S. Chapin III, D. A. Johnson, and J. D. McKendrick, “Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: implications for herbivory,” J. Ecol. 68 (1), 189–209 (1980).

    Article  Google Scholar 

  21. C. Churchland, L. Mayo-Bruinsma, A. Ronson, and P. Grogan, “Soil microbial and plant community responses to single large carbon and nitrogen additions in low arctic tundra,” Plant Soil 334, 409–421 (2010). https://doi.org/10.1007/s11104-010-0392-4

    Article  Google Scholar 

  22. E. Dorrepaal, S. Toet, R. S. P. van Logtestijn, E. Swart, M. J. van de Weg, T. V. Callaghan, and R. Aerts, “Carbon respiration from subsurface peat accelerated by climate warming in the subarctic,” Nature 460, 616–619 (2009). https://doi.org/10.1038/nature08216

    Article  Google Scholar 

  23. K. A. Edwards, J. Mcculloch, G. P. Kershaw, and R. Jefferies, “Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring,” Soil Biol. Biochem. 38, 2843–2851 (2006). https://doi.org/10.1016/j.soilbio.2006.04.042

    Article  Google Scholar 

  24. C. Freeman, N. Ostle, and H. Kang, “An enzymic ‘latch’ on a global carbon store,” Nature 409, 149–150 (2001). https://doi.org/10.1038/35051650

    Article  Google Scholar 

  25. P. Grogan, A. Michelsen, P. Ambus, and S. Jonasson, “Freeze-thaw effects on carbon and nitrogen dynamics in subarctic heath tundra mesocosms,” Soil Biol. Biochem. 36, 641–654 (2004). https://doi.org/10.1016/j.soilbio.2003.12.007

    Article  Google Scholar 

  26. W. Huang, W. McDowell, X. Zou, X. Zou, H. Ruan, J. Wang, and Z. Ma, “Qualitative differences in headwater stream dissolved organic matter and riparian water-extractable soil organic matter under four different vegetation types along an altitudinal gradient in the Wuyi Mountains of China,” Appl. Geochem. 52, 67–75 (2015). https://doi.org/10.1016/j.apgeochem.2014.11.014

    Article  Google Scholar 

  27. A. Huguet, L. Vacher, S. Relexans, S. Saubusse, J.‑M. Froidefond, and E. Parlanti, “Properties of fluorescent dissolved organic matter in the Gironde Estuary,” Org. Geochem. 40, 706–719 (2009). https://doi.org/10.1016/j.orggeochem.2009.03.002

    Article  Google Scholar 

  28. S. M. Ilina, O. Yu. Drozdova, S. A. Lapitskiy, Y. V. Alekhin, V. V. Demin, Y. A. Zavgorodnyaya, et al. “Size fractionation and optical properties of dissolved organic matter in the continuum soil solution-bog-river and terminal lake of a boreal watershed,” Org. Geochem. 66, 14–24 (2017). https://doi.org/10.1016/j.orggeochem.2013.10.008

    Article  Google Scholar 

  29. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  30. P. Kardol, J. R. De Long, and M. K. Sundqvist, “Crossing the threshold: the power of multi-level experiments in identifying global change responses,” New Phytol. 196, 323–326 (2012). https://doi.org/10.1111/j.1469-8137.2012.04341.x

    Article  Google Scholar 

  31. M. Kleber, “What is recalcitrant soil organic matter?” Environ. Chem. 7, 320–332 (2010). https://doi.org/10.1071/en10006

    Article  Google Scholar 

  32. P. Kuhry, C.-L. Ping, E. A. G. Schuur, C. Tarnocai, and S. Zimov, “Report from the International Permafrost Association: carbon pools in permafrost regions,” Permafrost Periglacial Process. 20, 229–234 (2009). https://doi.org/10.1002/ppp.648

    Article  Google Scholar 

  33. K. S. Larsen, S. Jonasson, and A. Michelsen, “Repeated freeze thaw cycles and their effects on biological processes in two arctic ecosystem types,” Appl. Soil Ecol. 21, 187–195 (2002). https://doi.org/10.1016/s0929-1393(02)00093-8

    Article  Google Scholar 

  34. M. Lavoie, M. Mack, and E. Schuur, “Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils,” J. Geophys. Res.: Biogeosci. 116, 1–14 (2011). https://doi.org/10.1029/2010jg001629

    Article  Google Scholar 

  35. F. Leroy, PhD Thesis (University of Orléans, Orléans, 2018).

  36. M. C. Mack, E. A. G. Schuur, M. S. Bret-Harte, G. R. Shaver, and F. S. Chapin III, “Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization,” Nature 431, 440–443 (2004). https://doi.org/10.1038/nature02887

    Article  Google Scholar 

  37. T. Moore and N. Basiliko, “Decomposition in boreal peatlands,” in Boreal Peatland Ecosystems (Springer-Verlag, Berlin, 2006), pp. 125–143.

    Google Scholar 

  38. W. C. Oechel and W. D. Billings, “Effects of global change on the carbon balance of arctic plants and ecosystems,” in Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective (Elsevier, Amsterdam, 1992), pp. 139–168.

    Google Scholar 

  39. N. J. Ostle, P. Smith, R. Fisher, F. I. Woodward, J. B. Fisher, J. U. Smith, D. Galbraith, et al., “Integrating plant-soil interactions into global carbon cycle models,” J. Ecol. 97, 851–863 (2009). https://doi.org/10.1111/j.1365-2745.2009.01547.x

    Article  Google Scholar 

  40. E. Parlanti, K. Wörz, L. Geoffroy, and M. Lamotte, “Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs,” Org. Geochem. 31, 1765–1781 (2000).

    Article  Google Scholar 

  41. K. Piirsoo, M. Viik, M. Viik, T. Kõiv, K. Käiro, A. Laas, T. Nõges, P. Pall, A. Selberg, L. Toomsalu, and S. Vilbaste, “Characteristics of dissolved organic matter in the inflows and in the outflow of Lake Võrtsjärv, Estonia,” J. Hydrol. 475, 306–313 (2012). https://doi.org/10.1016/j.jhydrol.2012.10.015

    Article  Google Scholar 

  42. L. Rustad, J. Campbell, G. Marion, R. Norby, M. Mitchell, A. Hartley, J. Cornelissen, J. Gurevitch, et al., “A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming,” Oecologia 126, 543–562 (2001). https://doi.org/10.1007/s004420000544

    Article  Google Scholar 

  43. J. P. Schimel, C. Bilbrough, and J. M. Welker, “Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities,” Soil Biol. Biochem. 36, 217–227 (2004). https://doi.org/10.1016/j.soilbio.2003.09.008

    Article  Google Scholar 

  44. Schlesinger, W.H. Biogeochemistry: An Analysis of Global Change (San Diego, 1991).

  45. M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, et al., “Persistence of soil organic matter as an ecosystem property,” Nature 478, 49–56 (2011). https://doi.org/10.1038/nature10386

    Article  Google Scholar 

  46. M. K. Sundqvist, N. J. Sanders, and D. A. Wardle, “Community and ecosystem responses to elevational gradients: processes, mechanisms and insights for global changes,” Ann. Rev. Ecol., Evol., Syst. 44, 261–280 (2013). https://doi.org/10.1146/annurev-ecolsys-110512-135750

    Article  Google Scholar 

  47. M. K. Sundqvist, D. A. Wardle, E. Olofsson, R. Giesler, and M. J. Gundale, “Chemical properties of plant litter in response to elevation: subarctic vegetation challenges phenolic allocation theories,” Funct. Ecol. 26, 1090–1099 (2012). https://doi.org/10.1111/j.1365-2435.2012.02034.x

    Article  Google Scholar 

  48. C. Tarnocai, J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycles 23, 1–11 (2009). https://doi.org/10.1029/2008GB003327

    Article  Google Scholar 

  49. E. Thiffault, K. D. Hannam, S. A. Quideau, D. Paré, N. Bélanger, S.-W. Oh, and A. D. Munson, “Chemical composition of forest floor and consequences for nutrient availability after wildfire and harvesting in the boreal forest,” Plant Soil 308, 37–53 (2008). https://doi.org/10.1007/s11104-008-9604-6

    Article  Google Scholar 

  50. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An extraction method for measuring soil microbial biomass C,” Soil Biol. Biochem. 19, 703–707 (1987).

    Article  Google Scholar 

  51. A. Vergnoux, R. Di Rocco, M. Domeizel, M. Guiliano, P. Doumenq, and F. Theraulaz, “Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV–vis and fluorescence spectroscopy approaches,” Geoderma 160, 434–443 (2011). https://doi.org/10.1016/j.geoderma.2010.10.014

    Article  Google Scholar 

  52. M. Wallenstein, S. McMahon, and J. Schimel, “Seasonal variation in enzyme activities and temperature sensitivities in arctic tundra soils,” Global Change Biol. 15, 1631–1639 (2009). https://doi.org/10.1111/j.1365-2486.2008.01819.x

    Article  Google Scholar 

  53. H. F. Wilson and M. A. Xenopoulos, “Effects of agricultural land use on the composition of fluvial dissolved organic matter,” Nat. Geosci. 2, 37–41 (2009). https://doi.org/10.1038/ngeo391

    Article  Google Scholar 

  54. E. M. Wolkovich, B. I. Cook, J. M. Allen, T. M. Crimmins, J. L. Betancourt, S. E. Travers, S. Pau, J. Regetz, et al., “Warming experiments underpredict plant phenological responses to climate change,” Nature 485, 494–497 (2009). https://doi.org/10.1038/nature11014

    Article  Google Scholar 

  55. C. Wüthrich, D. Schaub, M. Weber, P. Marxer, and M. Conedera, “Soil respiration and soil microbial biomass after fire in a sweet chestnut forest in southern Switzerland,” Catena 48, 201–215 (2002). https://doi.org/10.1016/S0341-8162(01)00191-6

    Article  Google Scholar 

  56. N. Xu, H. F. Wilson, J. E. Saiers, and M. Entz, “Effects of crop rotation and management system on water-extractable organic matter concentration, structure, and bioavailability in a chernozemic agricultural soil,” J. Environ. Qual. 42, 179–190 (2013). https://doi.org/10.2134/jeq2012.0126

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the President of the Russian Federation (project MK-207.2019.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Maslov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, M.N., Tokareva, O.A., Karavanova, E.I. et al. Dynamics of Biological Activity and Water-Soluble Organic Matter in Tundra Soils on Slopes of Different Aspects in the Khibiny Mountains. Eurasian Soil Sc. 54, 514–527 (2021). https://doi.org/10.1134/S1064229321040116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321040116

Keywords:

Navigation