Skip to main content
Log in

Prokaryotic Community Structure in Casts of Aporrectodea caliginosa and Lumbricus terrestris

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

For the first time, a comparative study of the influence of two species of earthworms (Aporrectodea caliginosa and Lumbricus terrestris) on the composition of the prokaryotic complex of Umbric Albeluvisols was carried out using the methods of metagenomics. Prokaryotes in the soil and casts were represented mostly by Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria, and Verrucomicrobia phyla. The passage of soil through the earthworm intestines changed significantly the abundance of some taxa in the soil prokaryotic block, but not general indicators of biodiversity. In the casts of earthworms of both species, a decrease in the abundance of Acidobacteria and Gemmatimonadetes phyla, including predominantly oligotrophic bacteria, was observed. Casts of L. terrestris were characterized by an increase in the proportion of Actinobacteria and Firmicutes phyla, which were mainly represented by copiotrophs and hydrolytic bacteria. In addition, the abundance of Clostridiaceae anaerobic bacteria and Flavobacterium capable of nitrate respiration increased in the casts of L. terrestris, which could be due to the appearance of anaerobic conditions in the biogenically transformed soil. Generally, the changes in the taxonomic structure of prokaryotes in the soil treated by L. terrestris were greater than those in the soil treated by A. caliginosa. These differences among casts of different earthworm species could be due to the specificity of functioning of their digestive systems adapted to transformation of different food sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. N. P. Bityutskii and P. I. Kaidun, “The influence of earthworms on the mobility of microelements in soil and their availability for plants,” Eurasian Soil Sci. 41, 1306–1313 (2008).

    Article  Google Scholar 

  2. N. P. Bityutskii, A. N. Solov’eva, E. I. Lukina, I. N. Lapshina, D. Yu. Vlasov, and N. V. Kudryashova, “The effect of earthworms on the population of microorganisms and enzyme activity in soil,” Eurasian Soil Sci. 38, 73–82 (2005).

    Google Scholar 

  3. S. I. Ponomareva, “Effect of earthworms on the creation of stable structure in soddy-podzolic soil,” Tr. Pochv. Inst. im. V.V. Dokuchaeva 41, 304–376 (1953).

    Google Scholar 

  4. B. R. Striganova, Feeding of Soil Saprophages (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  5. A. V. Tiunov, “Influence of Lumbricus terrestris burrows on the spatial distribution and taxonomic structure of soil communities,” Ekol. Zh. 81 (2), 269–274 (2003).

    Google Scholar 

  6. O. V. Chekanovskaya, Earthworms and Pedogenesis (Academy of Sciences of USSR, Moscow, 1960) [in Russian].

    Google Scholar 

  7. T. I. Chernov, A. K. Tkhakakhova, and O. V. Kutovaya, “Assessment of diversity indices for the characterization of the soil prokaryotic community by metagenomic analysis,” Eurasian Soil Sci. 48, 410–415 (2015).

    Article  Google Scholar 

  8. M. Aira, S. Bybee, M. Pérez-Losada, and J. Domínguez, “Feeding on microbiomes: effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures,” FEMS Microbiol. Ecol. 91 (11), 1–10 (2015). https://doi.org/10.1093/femsec/fiv117

    Article  Google Scholar 

  9. M. Aira, M. Pérez-Losada, and J. Domínguez, “Microbiome dynamics during cast ageing in the earthworm Aporrectodea caliginosa,” Appl. Soil Ecol. 139, 56–63 (2019). https://doi.org/10.1016/j.apsoil.2019.03.019

    Article  Google Scholar 

  10. N. P. Bityutskii, E. I. Maiorov, and N. E. Orlova, “The priming effects induced by earthworm mucus on mineralization and humification of plant residues,” Eur. J. Soil Biol. 5, 1–6 (2012). https://doi.org/10.1016/j.ejsobi.2011.11.008

    Article  Google Scholar 

  11. N. P. Bityutskii, P. Kaidun, and K. Yakkonen, “Earthworms can increase mobility and bioavailability of silicon in soil,” Soil Biol. Biochem. 99, 47–53 (2016). https://doi.org/10.1016/j.soilbio.2016.04.022

    Article  Google Scholar 

  12. G. G. Brown and B. M. Doube, “Functional interactions between earthworms, microorganisms, organic matter, and plants,” in Earthworm Ecology, Ed. by C.A. Edwards (CRC Press, Boca Raton, FL, 2004), pp. 213–239.

    Google Scholar 

  13. J. G. Caporaso, J. Kuczynski, J. Stombaugh, et al., “QIIME allows analysis of highthroughput community sequencing data,” Nat. Methods 7 (5), 335–336 (2010). https://doi.org/10.1038/nmeth.f.303

    Article  Google Scholar 

  14. L. Delgado-Balbuena, J. M. Bello-López, Y. E. Navarro-Noya, A. Rodríguez-Valentín, M. L. Luna-Guido, and L. Dendooven, “Changes in the bacterial community structure of remediated anthracene-contaminated soils,” PLoS One 11 (10), 1–28 (2016). https://doi.org/10.1371/journal.pone.0160991

    Article  Google Scholar 

  15. N. Fierer and R. B. Jackson, “The diversity and biogeography of soil bacterial communities,” Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006). https://doi.org/10.1073/pnas.0507535103

    Article  Google Scholar 

  16. M. A. Furlong, D. R. Singleton, D. C. Coleman, and W. B. Whitman, “Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus,” Appl. Environ. Microbiol. 68 (3), 1265–1279 (2002). https://doi.org/10.1128/AEM.68.3.1265-1279.2002

    Article  Google Scholar 

  17. H. N. Hong, C. Rumpel, T. H. des Tureaux, G. Bardoux, D. Billou, T. T. Duc, and P. Jouquet, “How do earthworms influence organic matter quantity and quality in tropical soils?” Soil Biol. Biochem. 43, 223–230 (2011). https://doi.org/10.1016/j.soilbio.2010.09.033

  18. M. A. Horn, H. L. Drake, and A. Schramm, “Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar,” Appl. Environ. Microbiol. 72 (2), 1019–1026 (2006). https://doi.org/10.1128/AEM.72.2.1019-1026.2006

    Article  Google Scholar 

  19. A. B. de Menezes, M. T. Prendergast-Miller, L. Macdonald, P. Toscas, G. Baker, M. Farrell, T. Wark, A. Richardson, and P. Thrall, “Earthworm-induced shifts in microbial diversity in soils with rare versus established invasive earthworm populations,” FEMS Microbiol. Ecol. 94, 1–14 (2018). https://doi.org/10.1093/femsec/fiy051

    Article  Google Scholar 

  20. T. Natal-da-Luz, I. Lee, R. A. Verweij, P. V. Morais, M. J. M. van Velzen, J. P. Sousa, and C. A. M. van Gestel, “Influence of earthworm activity on microbial communities related with the degradation of persistent pollutants,” Environ. Toxicol. 31 (4), 794–803 (2012). https://doi.org/10.1002/etc.1738

    Article  Google Scholar 

  21. D. A. Pass, A. J. Morgan, D. S. Read, D. Field, A. J. Weightman, and P. Kille, “The effect of anthropogenic arsenic contamination on the earthworm microbiome,” Environ. Microbiol. 17 (6), 1884–1896 (2015). https://doi.org/10.1111/1462-2920.12712

    Article  Google Scholar 

  22. J. E. Satchell, Earthworm Ecology: From Darwin to Vermiculture (Chapman and Hall, London, 1983).

    Book  Google Scholar 

  23. S. Scheu, N. Schlitt, A. V. Tiunov, J. E. Newington, and H. T. Jones, “Effects of the presence and community composition of earthworms on microbial community functioning,” Oecologia 133 (2), 254–260 (2002). https://doi.org/10.1007/s00442-002-1023-4

    Article  Google Scholar 

  24. M. Shweta, “Cellulolysis: a transient property of earthworm or symbiotic/ingested microorganisms?” Int. J. Sci. Res. Publ. 2 (11), 1–8 (2012).

    Google Scholar 

  25. D. R. Singleton, P. F. Hendrix, D. C. Coleman, and W. B. Whitman, “Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta),” Soil Biol. Biochem. 35, 1547–1555 (2003). https://doi.org/10.1016/S0038-0717(03)00244-X

    Article  Google Scholar 

  26. P. K. Wüst, M. A. Horn, and H. L. Drake, “Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content,” ISME J. 5 (1), 92–106 (2011). https://doi.org/10.1038/ismej.2010.99

    Article  Google Scholar 

Download references

Funding

This study was performed using scientific instruments of the Central Scientific-Practical Center for Genomic Technologies, Proteomics, and Cell Biology of the All-Russia Research Institute of Agricultural Microbiology within the framework of state assignment No. 115122210098-2 “The role of the geochemical activity of soil microorganisms in maintaining the stability of terrestrial ecosystems.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Yakushev or N. P. Bityutskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhnazarova, V.Y., Yakushev, A.V., Yakkonen, K.L. et al. Prokaryotic Community Structure in Casts of Aporrectodea caliginosa and Lumbricus terrestris . Eurasian Soil Sc. 54, 507–513 (2021). https://doi.org/10.1134/S106422932104013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932104013X

Keywords:

Navigation