Skip to main content
Log in

Propagation dynamics for lattice differential equations in a time-periodic shifting habitat

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with the propagation dynamics for lattice differential equations in a time-periodic shifting habitat. We prove the existence, uniqueness and global exponential stability of the periodic forced waves. We also establish the spreading properties of the solutions. Our results indicate that the long-time behaviors of solutions depend on the speed of the shifting habitat and a number that is determined by the average of the maximum linearized growth rate and the diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alfaro, M., Berestycki, H., Raoul, G.: The effect of climate shift on a species submitted to dispersion, evolution, growth and nonlocal competition. SIAM J. Math. Anal. 49, 562–596 (2017)

    Article  MathSciNet  Google Scholar 

  2. Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., Rohani, P.: Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–684 (2006)

    Article  Google Scholar 

  3. Bell, J., Cosner, C.: Threshold behaviour and propagation for nonlinear difierential–difference systems motivated by modeling myelinated axons. Quart. Appl. Math. 42, 1–14 (1984)

    Article  MathSciNet  Google Scholar 

  4. Berestycki, H., Diekmann, O., Nagelkerke, C.J., Zegeling, P.A.: Can a species keep pace with s shifting climate? Bull. Math. Biol. 71, 399–429 (2009)

    Article  MathSciNet  Google Scholar 

  5. Berestycki, H., Fang, J.: Forced waves of the Fisher–KPP equation in a shifting environment? J. Differ. Equ. 264, 2157–2183 (2018)

    Article  MathSciNet  Google Scholar 

  6. Berestycki, H., Rossi, L.: Reaction–diffusion equations for population dynamics with forced speed. I. The case of the whole space. Discrete Contin. Dyn. Syst. 21, 41–67 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bouhours, J., Giletti, T.: Extinction and spreading of a species under the joint influence of climate change and a weak Allee effect: a two-path model (2016). arXiv:1601.06589

  8. Cao, F., Shen, W.: Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media. Discrete Contin. Dyn. Syst. 37, 4697–4727 (2017)

    Article  MathSciNet  Google Scholar 

  9. Chow, S.N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Differ. Equ. 149, 248–291 (1998)

    Article  MathSciNet  Google Scholar 

  10. Fang, J., Lou, Y., Wu, J.: Can pathogen spread keep pace with its host invasion? SIAM J. Appl. Math. 76, 1633–1657 (2016)

    Article  MathSciNet  Google Scholar 

  11. Fang, J., Peng, R., Zhao, X.-Q.: Propagation dynamics of a reaction–diffusion equation in a time-periodic shifting environment (2020). arXiv:2004.08766

  12. Fang, J., Wei, J., Zhao, X.-Q.: Spreading speeds and traveling waves for non-monotone time delayed lattice equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466, 1919–1934 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Fang, J., Zhao, X.-Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)

    Article  MathSciNet  Google Scholar 

  14. Hu, C., Li, B.: Spatial dynamics for lattice differential equations with a shifting habitat. J. Differ. Equ. 259, 1967–1989 (2015)

    Article  MathSciNet  Google Scholar 

  15. Hu, H., Zou, X.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145, 4763–4771 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kopell, N., Ermentront, G.B.: On chains of oscillators forced at one end. SIAM J. Appl. Math. 51, 1397–1417 (1991)

    Article  MathSciNet  Google Scholar 

  17. Laplante, J.P., Erneux, T.: Propagation failure in arrays of coupled bistable chemical reactors. J. Phys. Chem. 96, 4931–4934 (1992)

    Article  Google Scholar 

  18. Li, B., Bewick, S., Shang, J., Fagan, W.F.: Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 74, 1397–1417 (2014)

    Article  MathSciNet  Google Scholar 

  19. Li, B., Wu, J.: Traveling waves in integro-difference equations with a shifting habitat. J. Differ. Equ. 268, 4059–4078 (2020)

    Article  MathSciNet  Google Scholar 

  20. Li, W.-T., Wang, J.-B., Zhao, X.-Q.: Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J. Nonlinear Sci. 28, 1189–2119 (2018)

    Article  MathSciNet  Google Scholar 

  21. Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equ. 11, 49–128 (1999)

    Article  MathSciNet  Google Scholar 

  22. Potapov, A., Lewis, M.: Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull. Math. Biol. 66, 975–1008 (2004)

    Article  MathSciNet  Google Scholar 

  23. Shen, W.: Spreading and generalized propagating speeds of discrete KPP models in time varying environments. Front. Math. China 4, 523–562 (2009)

    Article  MathSciNet  Google Scholar 

  24. Taylor, J.E., Handwerker, C.A., Cahn, J.W.: Geometric models for crystal growth. Acta Metall. Mater. 40, 1443–1474 (1992)

    Article  Google Scholar 

  25. Wang, J.-B., Zhao, X.-Q.: Uniqueness and global stability of forced waves in a shifting environment. Proc. Am. Math. Soc. 147, 1467–1481 (2019)

    Article  MathSciNet  Google Scholar 

  26. Weng, P., Huang, H., Wu, J.: Asymptotic speed of a propagation of wave fronts in a lattice delay differential equation with global interaction. SIAM J. Appl. Math. 68, 409–439 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Wu, C., Wang, Y., Zou, X.: Spatial-temporal dynamics of a Lotka–Volterra competition model with nonlocal dispersal under shifting environment. J. Differ. Equ. 267, 4890–4921 (2019)

    Article  MathSciNet  Google Scholar 

  28. Wu, S.-L., Hsu, C.-H.: Propagation of monostable traveling fronts in discrete periodic media with delay. Discrete Contin. Dyn. Syst. 38, 3025–3060 (2018)

    Article  MathSciNet  Google Scholar 

  29. Yang, Y., Wu, C., Li, Z.: Forced waves and their asymptotics in a Lotka–Volterra cooperative model under climate change. Appl. Math. Comput. 353, 254–264 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Yi, T., Zhao, X.-Q.: Propagation dynamics for monotone evolution systems without spatial translation invariance. J. Funct. Anal. 279, 108722 (2020)

    Article  MathSciNet  Google Scholar 

  31. Zhang, G.-B., Zhao, X.-Q.: Propagation dynamics of a nonlocal dispersal Fisher–KPP equation in a time-periodic shifting habitat. J. Differ. Equ. 268, 2852–2885 (2020)

    Article  MathSciNet  Google Scholar 

  32. Zhao, X.-Q.: Dynamical Systems in Population Biology, 2nd edn. Springer, New York (2017)

    Book  Google Scholar 

  33. Zinner, B.: Existence of traveling wave front solutions for the discrete Nagumo equation. J. Differ. Equ. 96, 1–27 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions which have led to an improvement of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Liang Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shi-Liang Wu: Partially supported by the NSF of China (No. 11671315) and Natural Science Basic Research Program of Shaanxi (No. 2020JC-24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Ly., Wu, SL. Propagation dynamics for lattice differential equations in a time-periodic shifting habitat. Z. Angew. Math. Phys. 72, 93 (2021). https://doi.org/10.1007/s00033-021-01522-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01522-w

Keywords

Mathematics Subject Classification

Navigation