Skip to main content
Log in

Solution for nonvariational quasilinear elliptic systems via sub-supersolution technique and Galerkin method

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we obtain the existence of positive solution for a system of quasilinear Schrödinger equations with concave nonlinearities which is related to several applications in Hydrodynamics, Heidelberg Ferromagnetism and Magnus Theory, Condensed Matter Theory, Dissipative Quantum Mechanics and nanotubes and fullerene-related structures. The quasilinear Schrödinger problem is studied by considering a suitable change of variables which transforms the original problem in to a semilinear one. By means of the several properties of the change of variables, constructions of suitable sub-supersolutions, monotonic iteration arguments and the Galerkin method, we obtain the existence of solution for the semilinear problem. The paper is divided in two parts. In the first one, we use the method of sub-supersolutions to obtain a solution for the problem. In the second part, we use the Galerkin method and a comparison argument to obtain a solution for the system considered. An important feature is that the sub-supersolution approach is rare in the literature for the type of problem considered here and the Galerkin method was not used to consider quasilinear Schrödinger equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi, S., Watanabe, T.: Uniqueness of the ground state solutions of quasilinear Schrödinger equations. Nonlinear Anal. 75, 819–833 (2012)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.O., de Figueiredo, D.G.: Nonvariational elliptic systems via Galerkin methods. Function Spaces, Differential Operators and Nonlinear Analysis—The Hans Triebel Anniversary Volume, Ed . Birkhauser, Switzerland, pp. 47–57 (2003)

  3. Ambrosetti, A., Brézis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)

    Article  MathSciNet  Google Scholar 

  4. Brézis, H.: Functional Analysis. Universitext, New York, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011)

    Google Scholar 

  5. Byeon, J., Wang, Z.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

    Article  MathSciNet  Google Scholar 

  6. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications. Springer, New York (2007)

    Book  Google Scholar 

  7. Cintra, W., Medeiros, E., Severo, U.: On positive solutions for a class of quasilinear elliptic equations. Z. Angew. Math. Phys. (2019). https://doi.org/10.1007/s00033-019-1121-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MathSciNet  Google Scholar 

  9. do Ó, J.M.B., Moameni, A.: Solutions for singular quasilinear Schrödinger equations with one parameter. Commun. Pure Appl. Anal. 9(4):1011–1023 (2010)

  10. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  11. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  12. Fang, X., Zhang, J.: Multiplicity of positive solutions for quasilinear elliptic equations involving critical nonlinearity. Adv. Nonlinear Anal. 9, 1420–1436 (2020)

    Article  MathSciNet  Google Scholar 

  13. Figueiredo, G.M., Júnior, J.R.S., Suárez, A.: Structure of the set of positive solutions of a non-linear Schrödinger equation. Isr. J. Math. 227, 485–505 (2018)

    Article  Google Scholar 

  14. Figueiredo, G.M., Ruviaro, R., Junior, J.O.: Quasilinear equations involving critical exponent and concave nonlinearity at the origin. Milan J. Math. (2020). https://doi.org/10.1007/s00032-020-00315-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differentiol Equations of Second-Order. Springer, Berlin (1977)

    Book  Google Scholar 

  16. Guo, Y., Tang, Z.: Ground state solutions for quasilinear Schrödinger systems. J. Math. Anal. Appl. 389(1), 322–339 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hartmann, B., Zakrzewski, W.J.: Electrons on hexagonal lattices and applications to nanotubes. Phys. Rev. B 68, 184302 (2003)

    Article  Google Scholar 

  18. Hasse, R.: A general method for the solution of nonlinear soliton and kink Schröinger equations. Z. Phys. B 37, 83–87 (1980)

    Article  MathSciNet  Google Scholar 

  19. Lions, J.L.: Quelques méthodes de résolution des problémes aux limites non liéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  20. Liu, J., Liu, D.: Multiple soliton solutions for a quasilinear Schrödinger equation. Indian J. Pure Appl. Math. 48, 75–90 (2017)

    Article  MathSciNet  Google Scholar 

  21. Liu, J., Wang, Y., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations II. J. Differ. Equ. 187, 473–493 (2003)

    Article  Google Scholar 

  22. Makhankov, V.G., Fedyanin, V.: Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    Article  MathSciNet  Google Scholar 

  23. Severo, U.B.: Existence of weak solutions for quasilinear elliptic equations involving the p-Laplacian. Electron. J. Differ. Equ. 56, 1–16 (2008)

    MathSciNet  MATH  Google Scholar 

  24. dos Santos, G., Figueiredo, G.M., Severo, U.B.: Multiple solutions for a class of singular quasilinear problems. J. Math. Anal. Appl. 480(2), 123405 (2019)

    Article  MathSciNet  Google Scholar 

  25. Severo, U., da Silva, E.: On the existence of standing wave solutions for a class of quasilinear Schrödinger systems. J. Math. Anal. Appl. 412, 763–775 (2014)

    Article  MathSciNet  Google Scholar 

  26. Zhang, X., Liu, L., Wu, Y., Cui, Y.: The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach. J. Math. Anal. Appl. 464(2), 1089–1106 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for their valuable comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro S. Tavares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, F.J.S.A., dos Santos, G.C.G. & Tavares, L.S. Solution for nonvariational quasilinear elliptic systems via sub-supersolution technique and Galerkin method. Z. Angew. Math. Phys. 72, 99 (2021). https://doi.org/10.1007/s00033-021-01532-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01532-8

Keywords

Mathematics Subject Classification

Navigation