Skip to main content
Log in

Asymptotic limit of fast rotation for the incompressible Navier–Stokes equations in a 3D layer

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider the initial value problem for the Navier–Stokes equation with the Coriolis force in a three-dimensional infinite layer. We prove the unique existence of global solutions for initial data in the scaling-invariant space when the speed of rotation is sufficiently high. Furthermore, we consider the asymptotic limit of the fast rotation and show that the global solution converges to that of 2D incompressible Navier–Stokes equations in some global in time space-time norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Babin, A. Mahalov, and B. Nicolaenko, Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids, Asymptot. Anal. 15 (1997), 103–150.

    Article  MathSciNet  Google Scholar 

  2. A. Babin, A. Mahalov, and B. Nicolaenko, Global regularity of 3D rotating Navier–Stokes equations for resonant domains, Indiana Univ. Math. J. 48 (1999), 1133–1176.

    MathSciNet  MATH  Google Scholar 

  3. A. Babin, A. Mahalov, and B. Nicolaenko, 3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J. 50 (2001), 1–35.

    Article  MathSciNet  Google Scholar 

  4. J. Bourgain and J. Pavlović, Ill-posedness of the Navier–Stokes equations in a critical space in 3D, J. Funct. Anal. 255 (2008), 2233–2247.

    Article  MathSciNet  Google Scholar 

  5. J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier, Anisotropy and dispersion in rotating fluids, 31 (2002), 171–192.

    Google Scholar 

  6. J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier, Mathematical geophysics, Oxford Lecture Series in Mathematics and its Applications, vol. 32, The Clarendon Press, Oxford University Press, Oxford, 2006. An introduction to rotating fluids and the Navier–Stokes equations.

  7. E. Feireisl, I. Gallagher, D. Gerard-Varet, and A. Novotný, Multi-scale analysis of compressible viscous and rotating fluids, Comm. Math. Phys. 314 (2012), 641–670.

    Article  MathSciNet  Google Scholar 

  8. E. Feireisl, I. Gallagher, and A. Novotný, A singular limit for compressible rotating fluids, SIAM J. Math. Anal. 44 (2012), 192–205.

    Article  MathSciNet  Google Scholar 

  9. H. Fujita and T. Kato, On the Navier–Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269–315.

  10. T. Gallay and V. Roussier-Michon, Global existence and long-time asymptotics for rotating fluids in a 3D layer, J. Math. Anal. Appl. 360 (2009), 14–34.

    Article  MathSciNet  Google Scholar 

  11. Y. Giga, K. Inui, A. Mahalov, and J. Saal, Uniform global solvability of the rotating Navier–Stokes equations for nondecaying initial data, Indiana Univ. Math. J. 57 (2008), 2775–2791.

    Article  MathSciNet  Google Scholar 

  12. Y. Giga and T. Miyakawa, Solutions in\(L_r\)of the Navier–Stokes initial value problem, Arch. Rational Mech. Anal. 89 (1985), 267–281.

    Article  MathSciNet  Google Scholar 

  13. M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier–Stokes equations in the rotational framework, Math. Z. 265 (2010), 481–491.

    Article  MathSciNet  Google Scholar 

  14. T. Iwabuchi and M. Nakamura, Small solutions for nonlinear heat equations, the Navier–Stokes equation, and the Keller-Segel system in Besov and Triebel-Lizorkin spaces, Adv. Differential Equations 18 (2013), 687–736.

    MathSciNet  MATH  Google Scholar 

  15. T. Iwabuchi and R. Takada, Global solutions for the Navier–Stokes equations in the rotational framework, Math. Ann. 357 (2013), 727–741.

    Article  MathSciNet  Google Scholar 

  16. T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier–Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal. 267 (2014), 1321–1337.

    Article  MathSciNet  Google Scholar 

  17. T. Kato, Strong\(L^{p}\)-solutions of the Navier–Stokes equation in\({\bf R}^{m}\), with applications to weak solutions, Math. Z. 187 (1984), 471–480.

    Article  MathSciNet  Google Scholar 

  18. N. Kishimoto and T. Yoneda, Global solvability of the rotating Navier–Stokes equations with fractional Laplacian in a periodic domain, Math. Ann. 372 (2018), 743–779.

    Article  MathSciNet  Google Scholar 

  19. H. Koch and D. Tataru, Well-posedness for the Navier–Stokes equations, Adv. Math. 157 (2001), 22–35.

    Article  MathSciNet  Google Scholar 

  20. Y. Koh, S. Lee, and R. Takada, Dispersive estimates for the Navier–Stokes equations in the rotational framework, Adv. Differential Equations 19 (2014), 857–878.

    MathSciNet  MATH  Google Scholar 

  21. P. Konieczny and T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier–Stokes equations, J. Differential Equations 250 (2011), 3859–3873.

    Article  MathSciNet  Google Scholar 

  22. H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations 19 (1994), 959–1014.

    Article  MathSciNet  Google Scholar 

  23. H. Kozono, T. Ogawa, and Y. Taniuchi, Navier–Stokes equations in the Besov space near\(L^\infty \)and BMO, Kyushu J. Math. 57 (2003), 303–324.

    Article  MathSciNet  Google Scholar 

  24. V. Roussier-Michon, Long-time asymptotics of Navier-Stokes and vorticity equations in a three-dimensional layer, Comm. Partial Differential Equations 29 (2004), 1555–1605 (English, with English and French summaries).

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP19K03584, JP18KK0072, JP17H02851 and JP20H01814.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Ohyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohyama, H., Takada, R. Asymptotic limit of fast rotation for the incompressible Navier–Stokes equations in a 3D layer. J. Evol. Equ. 21, 2591–2629 (2021). https://doi.org/10.1007/s00028-021-00697-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-021-00697-z

Keywords

Mathematics Subject Classification

Navigation