Skip to main content
Log in

A search for the quark-hadron phase transition in simulated pp collisions at \(\sqrt{{\varvec{s}}}\) = 13 TeV using UrQMD model by the scaled factorial moment method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Charged particle multiplicity fluctuations in simulated pp collisions at \(\sqrt s = 13\;{\text{TeV}}\) have been studied by the method of scaled factorial moment for the minimum bias events generated by Ultra-Relativistic Quantum Molecular Dynamics (UrQMD) model in the pseudo-rapidity \((\eta )\), azimuthal angle (\(\phi\)) and two-dimensional anisotropic \((\eta - \phi )\) phase space. Strong intermittent types of fluctuations have been observed for the UrQMD simulated data. Systematic studies of intermittent fluctuations in terms of scaled factorial moments have been utilized to extract the anomalous fractal dimension in the pseudo-rapidity \((\eta )\), azimuthal angle (\(\phi\)) and two-dimensional anisotropic \((\eta - \phi ) \) phase space. Search for the quark-hadron phase transition in the framework of Ginzburg–Landau theory of the second-order phase transition in the light of the scaled factorial moment method has also been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: In this paper experimental data of LHC has been simulated by UrQMD model. All data generated or analysed during this study are included in this published article.]

References

  1. S.M. Sanches Jr., F.S. Navarra, D.A. Fogaça, Nucl. Phys. A 937, 1 (2015)

    Article  ADS  Google Scholar 

  2. W. Busza et al., Ann. Rev. Nucl. Part. Sci. 68, 1 (2018)

    Article  Google Scholar 

  3. E. Shuryak, Prog. Part. Nucl. Phys. 62, 48 (2009)

    Article  ADS  Google Scholar 

  4. K. Fukushima, T. Hatsuda, Rep. Prog. Phys. 74, 014001 (2011)

    Article  ADS  Google Scholar 

  5. P. Braun-Munzinger, V. Koch, T. Schafer, J. Stachel, Phys. Rep. 621, 76 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Pasechnik, M. Sumbera, Universe 3, 7 (2017)

    Article  ADS  Google Scholar 

  7. A. Bialas, R. Peschanski, Nucl. Phys. B 273, 703 (1986)

    Article  ADS  Google Scholar 

  8. A. Bialas, R. Peschanski, Nucl. Phys. B 308, 857 (1988)

    Article  ADS  Google Scholar 

  9. G. Das et al., Phys. Rev. C 54, 2081 (1996)

    Article  ADS  Google Scholar 

  10. S. Bhattacharyya et al., Fractals 26, 1850015 (2018)

    Article  ADS  Google Scholar 

  11. M.K. Ghosh et al., Nucl. Phys. A 858, 67 (2011)

    Article  ADS  Google Scholar 

  12. N.M. Agababyan et al., Phys. Lett. B 431, 451 (1998)

    Article  ADS  Google Scholar 

  13. A.M. Tawfik, J. Phys. G27, 2283 (2001)

    Article  ADS  Google Scholar 

  14. D. Ghosh et al., Phys. Rev. C 59, 2286 (1999)

    Article  ADS  Google Scholar 

  15. E.A. De Wolf, I.M. Dremin, W. Kittel, Phys. Rep. 270, 48 (1996)

    Google Scholar 

  16. J. Wu et al., Phys. Lett. B 801, 135186 (2020)

    Article  Google Scholar 

  17. P. Lipa, B. Bushbeck, Phys. Lett. B 223, 465 (1989)

    Article  ADS  Google Scholar 

  18. V.L. Ginzburg, L.D. Landau, Z. Eksp, Teor. Fiz. (ZhETF) 20, 1064 (1950)

    Google Scholar 

  19. R. Graham, F. Haake “Quantum Statistics in Optics and Solid State Physics” Springer Tracts in Modern Physics Vol. 66 (Springer-Verlag, Berlin, 1973). ISBN 978–3–540–38458–8

  20. R.C. Hwa “Scaling Properties of Quark–Hadron Phase Transition” , Quark-Gluon Plasma 2, World Scientific, Singapore, Nov, 1995, p. 749. ISBN: 978-981-02-2399-1 (hardcover) Edited By R.C.Hwa

  21. R.C. Hwa, Phys. Rev. D 47, 2773 (1993)

    Article  ADS  Google Scholar 

  22. S. Ahmad, M.A. Ahmad, Nucl. Phys. A 789, 298 (2007)

    Article  ADS  Google Scholar 

  23. X.Y. Long et al., Nucl. Phys. A 920, 33 (2013)

    Article  ADS  Google Scholar 

  24. P. Mali et al., Can. J. Phys. 89, 949 (2011)

    Article  ADS  Google Scholar 

  25. M.K. Ghosh et al., J. Phys. G 34, 177 (2007)

    Article  ADS  Google Scholar 

  26. A. Kamal et al., Acta Phys. Pol. B 46, 1549 (2015)

    Article  ADS  Google Scholar 

  27. M.K. Ghosh et al., Can J. Phys. 88, 575 (2010)

    Article  ADS  Google Scholar 

  28. R.C. Hwa, M. Nazirov, Phys. Rev. Lett. 69, 741 (1992)

    Article  ADS  Google Scholar 

  29. R.C. Hwa, C.B. Yang, Acta. Phys. Pol B 48, 23 (2017)

    Article  ADS  Google Scholar 

  30. U. Heinz, and M. Jacob, nucl-th/0002042v1 16th Feb 2000

  31. I. Arsene et al., BRAHMS Collaboration. Nucl. Phys. A 757, 1 (2005)

    Article  ADS  Google Scholar 

  32. K. Adcox et al., PHENIX Collaboration. Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  33. B. Back et al., PHOBOS Collaboration. Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  34. J. Adams et al., STAR Collaboration. Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  35. E. Shuryak, Nucl. Phys. A 750, 64 (2005)

    Article  ADS  Google Scholar 

  36. P. Huovinen, P. Ruuskanen, Ann. Rev. Nucl. Part. Sci. 56, 163 (2006)

    Article  ADS  Google Scholar 

  37. B. Muller, J.L. Nagle, Ann. Rev. Nucl. Part. Sci. 56, 93 (2006)

    Article  ADS  Google Scholar 

  38. B. Abelev et al., ALICE Collaboration. Phys. Rev. C 88, 044910 (2013)

    Article  ADS  Google Scholar 

  39. J. Adam et al., ALICE Collaboration. Phys. Rev. C 93, 034913 (2016)

    Article  ADS  Google Scholar 

  40. J. Adam et al., ALICE Collaboration. Phys. Lett. B 762, 376 (2016)

    Article  ADS  Google Scholar 

  41. B. Abelev et al., ALICE Collaboration. Jour. of High Energy Phys. 06, 190 (2015)

    Article  ADS  Google Scholar 

  42. J.L. Nagle, W.A. Zajc, Ann. Rev. Nucl. Part. Sci. 68, 211 (2018)

    Article  ADS  Google Scholar 

  43. J. Adam et al (ALICE Collaboration) Nat. Phys. 13 (2017) 535.

  44. C. Aidala et al (PHENIX Collaboration) Nat. Phys. 15(2019) 214

  45. S. Bhattacharyya et al Advances in High Energy Physics Volume 2018 (2018), Article ID 6307205

  46. S. Chatrchyan et al (CMS collaboration) Jour. of High Ener. Phys. 08(2011)86

  47. K. Shtejer et al (MPD Collaboration) EPJ Web of Conferences 204 (2019)07005

  48. Q. Li et al., J. Phys. Conf. Ser. 420, 012039 (2013)

    Article  Google Scholar 

  49. S. Bhattacharyya et al., Acta Phys. Pol. B 47, 2347 (2016)

    Article  ADS  Google Scholar 

  50. A. Aduszkiewicz et al., Eur. Phys. J. C 77, 59 (2017)

    Article  ADS  Google Scholar 

  51. W. Ochs, Phys. Lett. B 247, 101 (1990)

    Article  ADS  Google Scholar 

  52. L. Liu, Y. Zhang, Wu. Yuanfang, Z Phys. C 69, 323 (1996)

    Article  Google Scholar 

  53. D. Ghosh et al., J. Phys. G 29, 983 (2003)

    Article  ADS  Google Scholar 

  54. D. Ghosh et al., Nucl. Phys. A 720, 419 (2003)

    Article  ADS  Google Scholar 

  55. D. Ghosh et al., J. Phys. G 37, 105113 (2010)

    Article  ADS  Google Scholar 

  56. D. Ghosh et al., J. Phys. G 39, 105101 (2012)

    Article  ADS  Google Scholar 

  57. N.M. Agababyan et al., NA22 Collaboration. Phys. Lett. B 382, 305 (1996)

    Article  ADS  Google Scholar 

  58. M. Bleicher et al., J. Phys. G. 25, 1859 (1999)

    Article  ADS  Google Scholar 

  59. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)

    Article  ADS  Google Scholar 

  60. H. Petersen et al arxiv [hep-th] 0805.0567v1 5 May 2008

  61. A. Bialas, M. Gazdzicki, Phys. Lett. B 252, 483 (1990)

    Article  ADS  Google Scholar 

  62. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, Euro. Phys. J. A 52, 301 (2016)

    Article  ADS  Google Scholar 

  63. S. Gope, B. Bhattacharjee, Euro. Phys. J. A 57, 44 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges Prof. Maria Haiduc, retired scientist, Institute of space science, Bucharest, Romania, for her whole hearted support and help to carry out this research work. Dr. Bhattacharyya also acknowledges Prof. Dipak Ghosh, Department of Physics, Jadavpur University and Prof. Argha Deb Department of Physics, Jadavpur University, for their constant inspiration in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarnapratim Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S. A search for the quark-hadron phase transition in simulated pp collisions at \(\sqrt{{\varvec{s}}}\) = 13 TeV using UrQMD model by the scaled factorial moment method. Eur. Phys. J. Plus 136, 471 (2021). https://doi.org/10.1140/epjp/s13360-021-01325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01325-y

Navigation