Skip to main content
Log in

Piezoelectric bending of GPL-reinforced annular and circular sandwich nanoplates with FG porous core integrated with sensor and actuator using DQM

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Axisymmetric bending analysis of graphene platelet (GPL) sandwich annular and circular nanoplates with FG porous core and integrated with sensor and actuator resting on an elastic substrate under various boundary conditions is presented in this article. The present nanocomposite model is subjected to mechanical load and an external voltage. The upper and lower sandwich layers are made of aluminum matrix with GPL reinforcement. The effective material properties of the sandwich face layers are estimated in the framework of Halpin–Tsai scheme. In accordance with a refined four-variable theory considering the transverse shear and normal strains, the motion equations are obtained from principle of the virtual work. The size effects are considered by employing the nonlocal strain gradient theory. The differential quadrature method is utilized here to solve the governing equations. First, the obtained results are validated by implementing some comparisons with previous work. Then a comprehensive illustration is executed to show the impacts of boundary conditions, GPLs weight fraction, geometrical dimensions, elastic foundation parameters and applied voltage on the bending of the sandwich nanoplates with FG-porous core and piezoelectric layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang Z, Chen SH, Han W. The static shape control for intelligent structures. Finite Elem Anal Des. 1997;26(4):303–14.

    Article  Google Scholar 

  2. He XQ, Ng TY, Sivashanker S, Liew KM. Active control of FGM plates with integrated piezoelectric sensors and actuators. Int J Solids Struct. 2001;38(9):1641–55.

    Article  Google Scholar 

  3. Ezzin H, Ben Amor M, Ben Ghozlen MH. Lamb waves propagation in layered piezoelectric/ piezomagnetic plates. Ultrasonics. 2017;76:63–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kulikov GM, Plotnikova SV. Three-dimensional exact analysis of piezoelectric laminated plates via a sampling surfaces method. Int J Solids Struct. 2013;50:1916–29.

    Article  Google Scholar 

  5. Kulikov GM, Plotnikova SV. A new approach to three-dimensional exact solutions for functionally graded piezoelectric laminated plates. Compos Struct. 2013;106:33–46.

    Article  Google Scholar 

  6. Alibeigloo A, Madoliat R. Static analysis of cross-ply laminated plates with integrated surface piezoelectric layers using differential quadrature. Compos Struct. 2009;88:342–53.

    Article  Google Scholar 

  7. Mallek H, Jrad H, Algahtani A, Wali M, Dammak F. Geometrically non-linear analysis of FG-CNTRC shell structures with surface-bonded piezoelectric layers. Comput Methods Appl Mech Eng. 2019;347:679–99.

    Article  ADS  MathSciNet  Google Scholar 

  8. Fakhari V, Ohadi A, Yousefian P. Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layers in thermal environment. Compos Struct. 2011;93:2310–21.

    Article  Google Scholar 

  9. Kolahchi R, Zarei MS, Hajmohammad MH, Nouri A. Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. Int J Mech Sci. 2017;130:534–45.

    Article  Google Scholar 

  10. Zenkour AM, Sobhy M. Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin–Voigt viscoelastic nanoplate embedded in a viscoelastic medium. Acta Mech. 2018;229(1):3–19.

    Article  MathSciNet  Google Scholar 

  11. Abazid MA, Sobhy M. Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory. Microsyst Technol. 2018;24(2):1227–45.

    Article  Google Scholar 

  12. Sobhy M. Magneto-electro-thermal bending of FG-graphene reinforced polymer doubly-curved shallow shells with piezoelectromagnetic faces. Compos Struct. 2018;203:844–60.

    Article  Google Scholar 

  13. Rostami R, Mohammadimehr M. Vibration control of sandwich plate–reinforced nanocomposite face sheet and porous core integrated with sensor and actuator layers using perturbation method. J Vib Control. 2020. https://doi.org/10.1177/1077546320948330.

    Article  Google Scholar 

  14. Ebrahimi F, Jafari A, Barati MR. Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations. Thin-Walled Struct. 2017;119:33–46.

    Article  Google Scholar 

  15. Huang XL, Dong L, Wei GZ, Zhong DY. Nonlinear free and forced vibrations of porous sigmoid functionally graded plates on nonlinear elastic foundations. Compos Struct. 2019;228:111326.

    Article  Google Scholar 

  16. Wu D, Liu A, Huang Y, Huang Y, Pi Y, Gao W. Dynamic analysis of functionally graded porous structures through finite element analysis. Eng Struct. 2018;165:287–301.

    Article  Google Scholar 

  17. Safarpour M, Rahimi A, Alibeigloo A, Bisheh H, Forooghi A. Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions. Mech Based Des Struct Mach. 2020. https://doi.org/10.1080/15397734.2019.1701491.

    Article  Google Scholar 

  18. Sobhy M, Zenkour AM. Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory. Compos Struct. 2019;220:289–303.

    Article  Google Scholar 

  19. Sobhy M. Size dependent hygro-thermal buckling of porous FGM sandwich microplates and microbeams using a novel four-variable shear deformation theory. Int J Appl Mech. 2020;12(02):2050017.

    Article  Google Scholar 

  20. Abazid MA, Zenkour AM, Sobhy M. Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory. Mech Based Design Struct Mach. 2020. https://doi.org/10.1080/15397734.2020.1769651.

    Article  Google Scholar 

  21. Sobhy M, Zenkour AM. Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory. Waves Random Complex Media. 2020. https://doi.org/10.1080/17455030.2019.1634853.

    Article  Google Scholar 

  22. Zeng S, Wang BL, Wang KF. Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect. Compos Struct. 2019;207:340–51.

    Article  Google Scholar 

  23. Setoodeh AR, Shojaee M, Malekzadeh P. Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core. Compos B Eng. 2019;165:798–822.

    Article  CAS  Google Scholar 

  24. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  ADS  CAS  Google Scholar 

  25. Rafiee MA, Rafiee J, Yu ZZ, Koratkar N. Buckling resistant graphene nanocomposites. Appl Phys Lett. 2009;95:223103.

    Article  ADS  Google Scholar 

  26. Gao X, Yue H, Guo E, Zhang H, Lin X, Yao L, Wang B. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater Des. 2016;94:54–60.

    Article  CAS  Google Scholar 

  27. Kirgiz MS. Advancements in mechanical and physical properties for marble powder–cement composites strengthened by nanostructured graphite particles. Mech Mater. 2016;92:223–34.

    Article  Google Scholar 

  28. Kirgiz MS. Advance treatment by nanographite for Portland pulverised fly ash cement (the class F) systems. Compos B Eng. 2015;82:59–71.

    Article  CAS  Google Scholar 

  29. Yang Z, Feng C, Yang J, Wang Y, Lv J, Liu A, Fu J. Geometrically nonlinear buckling of graphene platelets reinforced dielectric composite (GPLRDC) arches with rotational end restraints. Aerosp Sci Technol. 2020;107:106326.

    Article  Google Scholar 

  30. Wang Y, Feng C, Yang J, Zhou D, Liu W. Static response of functionally graded graphene platelet–reinforced composite plate with dielectric property. J Intell Mater Syst Struct. 2020;31(19):2211–28.

    Article  Google Scholar 

  31. Milani MA, Gonzalez D, Quijada R, Basso NRS, Cerrada ML, Azambuja DS, et al. Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos Sci Technol. 2013;84:1–7.

    Article  CAS  Google Scholar 

  32. Sobhy M. 3-D elasticity numerical solution for magneto-hygrothermal bending of FG graphene/metal circular and annular plates on an elastic medium. Eur J Mech A Solids. 2021;88:104265.

    Article  MathSciNet  Google Scholar 

  33. Song M, Yang J, Kitipornchai S. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos B Eng. 2018;134:106–13.

    Article  CAS  Google Scholar 

  34. Sobhy M. Buckling and vibration of FG graphene platelets/aluminum sandwich curved nanobeams considering the thickness stretching effect and exposed to a magnetic field. Results Phys. 2020;16:102865.

    Article  Google Scholar 

  35. Abazid MA. 2D magnetic field effect on the thermal buckling of metal foam nanoplates reinforced with FG-GPLs lying on Pasternak foundation in humid environment. Eur Phys J Plus. 2020;135:910.

    Article  Google Scholar 

  36. Li K, Wu D, Chen X, Cheng J, Liu Z, Gao W. Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets. Compos Struct. 2018;204:114–30.

    Article  Google Scholar 

  37. Yi H, Sahmani S, Safaei B. On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions. Arch Civ Mech Eng. 2020;20:1–23.

    Article  Google Scholar 

  38. Sobhy M. Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory. J Sandw Struct Mater. 2020. https://doi.org/10.1177/1099636219900668.

    Article  Google Scholar 

  39. Radwan AF, Sobhy M. Transient instability analysis of viscoelastic sandwich CNTs-reinforced microplates exposed to 2D magnetic field and hygrothermal conditions. Compos Struct. 2020;245:112349.

    Article  Google Scholar 

  40. Sobhy M, Abazid MA. Dynamic and instability analyses of FG graphene-reinforced sandwich deep curved nanobeams with viscoelastic core under magnetic field effect. Compos B Eng. 2019;174:106966.

    Article  CAS  Google Scholar 

  41. Alipour MM, Shariyat M. Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores. Arch Civ Mech Eng. 2019;19(4):1211–34.

    Article  Google Scholar 

  42. Sobhy M, Zenkour AM. Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations. Steel Compos Struct. 2019;33(2):195–208.

    Google Scholar 

  43. Ebrahimi F, Mohammadi K, Barouti MM, Habibi M. Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell. Waves Random Complex Media. 2019. https://doi.org/10.1080/17455030.2019.1694729.

    Article  Google Scholar 

  44. Zenkour AM, Sobhy M. Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams. Eng Comput. 2021. https://doi.org/10.1007/s00366-020-01224-3.

    Article  Google Scholar 

  45. Shimpi RP. Refined plate theory and its variants. AIAA J. 2002;40(1):137–46.

    Article  ADS  Google Scholar 

  46. Mitchell JA, Reddy JN. A refined hybrid plate theory for composite laminates with piezoelectric laminae. Int J Solids Struct. 1995;32(16):2345–67.

    Article  Google Scholar 

  47. Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313.

    Article  ADS  MathSciNet  Google Scholar 

  48. Liu C, Ke LL, Wang YS, Yang J, Kitipornchai S. Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos Struct. 2013;106:167–74.

    Article  Google Scholar 

  49. Ghorbanpour Arani A, Kolahchi R, Zarei MS. Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory. Compos Struct. 2015;132:506–26.

    Article  Google Scholar 

  50. Song M, Yang J, Kitipornchai S, Zhu W. Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates. Int J Mech Sci. 2017;131–132:345–55.

    Article  Google Scholar 

  51. Golmakani ME, Vahabi H. Nonlocal buckling analysis of functionally graded annular nanoplates in an elastic medium with various boundary conditions. Microsyst Technol. 2017;23(8):3613–28.

    Article  CAS  Google Scholar 

  52. Demir O, Balkan D, Peker RC, Metin M, Arikoglu A. Vibration analysis of curved composite sandwich beams with viscoelastic core by using differential quadrature method. J Sandw Struct Mater. 2020;22(3):743–70.

    Article  Google Scholar 

  53. Shu C. Differential quadrature and its application in engineering. Berlin: Springer; 2000.

    Book  Google Scholar 

  54. Reddy JN, Wang CM, Kitipornchai S. Axisymmetric bending of functionally graded circular and annular plates. Eur J Mech A Solids. 1999;18(2):185–99.

    Article  Google Scholar 

  55. Yun W, Rongqiao X, Haojiang D. Three-dimensional solution of axisymmetric bending of functionally graded circular plates. Compos Struct. 2010;92(7):1683–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Sobhy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhy, M. Piezoelectric bending of GPL-reinforced annular and circular sandwich nanoplates with FG porous core integrated with sensor and actuator using DQM. Archiv.Civ.Mech.Eng 21, 78 (2021). https://doi.org/10.1007/s43452-021-00231-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00231-5

Keywords

Navigation