Skip to main content
Log in

Dynamic response of the e-HR neuron model under electromagnetic induction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Due to the fluctuation of membrane potential of neuron, there are complex time-varying electromagnetic fields in nervous systems, and the exciting electromagnetic field will further regulate the discharge activities of neurons. In this paper, the coupling of magnetic flux variables to the membrane potential is realised by using a magnetron memristor, and then a 5D extended Hindmarsh–Rose (e-HR) neuron model is established. With the help of Matcont software, the distribution and bifurcation properties of the equilibrium point in the e-HR model is analysed. It is found that there are subcritical Hopf bifurcation, coexisting oscillation modes and hidden limit cycle attractors with period 1 and period 2. In addition, by applying the washout controller, the subcritical Hopf bifurcation point can be transformed into the supercritical Hopf bifurcation point. Thus, the hidden oscillation behaviour of the model can be effectively eliminated. In order to analyse the influence of various parameters on the bifurcation behaviour, numerical simulation of two-parameter bifurcation, single-parameter bifurcation, maximum Lyapunov exponential and time response are given. It is found that the e-HR neuron has a complex bifurcation structure, i.e., the bifurcation structure with period-doubling bifurcations, inverse period-doubling bifurcations, period-adding bifurcations with and without chaos. At the same time, the study also finds that the coexistence behaviour of the periodic cluster discharge and the mixed-mode oscillations (MMOs) can be observed from the bifurcation structure with unique ‘periodic dislocation layer’ on the two-parameter plane. Interestingly, the bursting mode of the system is converted into MMOs when the system parameters are randomly perturbed. The results of this study provide useful insights into the complex discharge patterns and hidden discharge behaviours of neurons under electromagnetic induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E Av-Ron, J H Byrne and D A Baxter, J. Undergrad. Neurosci. Educ. 4, 2 (2006)

    Google Scholar 

  2. G S Wig, B L Schlaggar and S E Petersen, Ann. N. Y. Acad. Sci. 1224, 1 (2011)

    Article  Google Scholar 

  3. D E Postnov, R N Koreshkov and N A Brazhe, J. Biol. Phys. 35, 4 (2009)

    Article  Google Scholar 

  4. A L Hodgkin and A F Huxley, J. Physiol. 116, 4 (1952)

    Google Scholar 

  5. W E Sherwood and J Guckenheimer, SIAM J. Appl. Dyn. Syst. 9, 3 (2010)

    Article  Google Scholar 

  6. E M I Izhikevich and R Fitzhugh, Scholarpedia 1, 9 (2006)

    Google Scholar 

  7. P C Rech, Chin. Phys. Lett. 29, 6 (2012)

    Article  Google Scholar 

  8. C Morris and H Lecar, Biophys. J. 35, 1 (1981)

    Article  Google Scholar 

  9. J L Hindmarsh and R M Rose, Proc. R. Soc. B: Biol. Sci. 221, 1222 (1984).

    Google Scholar 

  10. Y Zhao, X Y Sun and Y Liu, Nonlinear Dyn. 93, 1315 (2018)

    Article  Google Scholar 

  11. H G Gu and B B Pan, Nonlinear Dyn. 81, 2107 (2015)

    Article  Google Scholar 

  12. P C Rech, Phys. Lett. A 375, 12 (2011)

    Article  Google Scholar 

  13. G S Yi, J Wang and X L Wei, J. Comput. Neurosci. 36, 3 (2014)

    Article  Google Scholar 

  14. X L Wei, B J Li and M L Lu, Int. J. Mod. Phys. B 29, 21 (2015)

    Google Scholar 

  15. J Berzhanskaya, N Chernyy and B J Gluckman, J. Comput. Neurosci. 34, 3 (2012)

    Google Scholar 

  16. H X Qin, J Ma and W Y Jin, Sci. China Technol. Sci. 57, 5 (2014)

    Google Scholar 

  17. D Hu and H Cao, Int. J. Bifurc. Chaos 26, 11 (2016)

    Article  Google Scholar 

  18. J Ma and J Tang, Sci. China Technol. Sci. 58, 12 (2015)

    Google Scholar 

  19. Y Wang, J Ma and Y Xu, Int. J. Bifurc. Chaos 27, 02 (2017)

    Google Scholar 

  20. F B Zhan and S Q Liu, Front. Comput. Neurosci. 11, 107 (2017)

    Article  Google Scholar 

  21. M Lv, C-N Wang and G-D Ren, Nonlinear Dyn. 85, 3 (2016)

    Article  Google Scholar 

  22. K M Tang, Z L Wang and X R Shi, Front. Comput. Neurosci. 11, 105 (2017)

    Article  Google Scholar 

  23. X Z Xia, Y C Zeng and Z J Li, PramanaJ. Phys. 91: 82 (2018)

    Article  ADS  Google Scholar 

  24. J Wu and S J Ma, Nonlinear Dyn. 96, 1895 (2019)

    Article  Google Scholar 

  25. H Bao, A H Hu and W B Liu, IEEE Trans. Neural Netw. Learn. Syst. 31, 2 (2019)

    Google Scholar 

  26. H Fallah, Int. J. Bifurc. Chaos 26, 09 (2016)

    Article  Google Scholar 

  27. I Bashkirtseva, V Nasyrova and L Ryashko, Commun. Nonlinear Sci. Numer. Simul. 63, 261 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. S Leo Kingston and K Thamilmaran, Int. J. Bifurc. Chaos 27, 7 (2017)

    Google Scholar 

  29. X B Rao, Y D Chu and L Xu, Commun. Nonlinear Sci. Numer. Simul. 50, 330 (2017)

  30. B Ambrosio, Int. J. Bifurc. Chaos 27, 05 (2017)

    Article  Google Scholar 

  31. J Rubin and M Wechselberger, Biol. Cybern. 97, 1 (2007)

    Article  Google Scholar 

  32. T Vo, J Tabak and R Bertram, J. Comput. Neurosci. 36, 2 (2014)

    Article  Google Scholar 

  33. M Lv and J Ma, Neurocomputing 205, 4 (2016)

    Article  Google Scholar 

  34. A I Selverston, M I Rabinovich and H D I Abarbanel, J. Physiol. Paris 94, 5 (2000)

    Article  Google Scholar 

  35. E B Megam Ngouonkadi, H B Fotsin and P H Louodop Fotso, Int. J. Bifurcat. Chaos 24, 05 (2014)

    Article  Google Scholar 

  36. A Moujahid, A d’Anjou and F J Torrealdea, Chaos Solitons Fractals 44, 11 (2011)

    Article  Google Scholar 

  37. E B Megam Ngouonkadi, H B Fotsin and P Louodop Fotso, Chaos Solitons Fractals 85, 2 (2016)

    Article  Google Scholar 

  38. H X Wang, Q Y Wang and Y H Zheng, Sci. China (Technol. Sci.) 57, 872 (2014)

    Article  ADS  Google Scholar 

  39. K J Wu, T Q Luo and H W Lu, Neural Comput. Appl. 27, 739 (2016)

    Article  Google Scholar 

  40. J A C Gallas, Mod. Phys. Lett. B 29, 1530018 (2015)

    Article  ADS  Google Scholar 

  41. X B Rao, Y D Chu and Y X Chang, Nonlinear Dyn. 88, 4 (2017)

    Article  Google Scholar 

  42. A Wolf, J B Swift and H L Swinney, Physica D 16, 3 (1985)

    Article  Google Scholar 

  43. H Simo, U S Domguia, J K Dutt and P Woafo, Pramana – J. Phys. 92: 3 (2019)

    Article  ADS  Google Scholar 

  44. M A Khan, M Nag and S Poria, Pramana – J. Phys. 91, 89 (2018)

    Article  ADS  Google Scholar 

  45. Z F Qu, Z D Zhang, P Miao and Q S Bi, Pramana – J. Phys. 91: 72 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation (Nos 11962012, 61863022), China Postdoctoral Science Foundation (No. 2018M633649XB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Lei An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, S., An, XL. Dynamic response of the e-HR neuron model under electromagnetic induction. Pramana - J Phys 95, 72 (2021). https://doi.org/10.1007/s12043-021-02095-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02095-z

Keywords

PACS Nos

Navigation