Skip to main content

Advertisement

Log in

Effects of Compacting Pressure and Sintering Temperature on the Properties of Highly Porous Pure Aluminum Produced with Boric Acid (H3BO3)

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

In this study, highly porous pure aluminum material with cellular structure was fabricated via powder metallurgy route using a space holding technique with the addition of boric acid powders as pore-forming agents. Boron products, namely, the boric acid, were used as novel pore-forming agents. Aluminum powders with high porosity of ~50% were successfully produced. The experiments were focused on investigating the effects of such parameters as compaction pressure and sintering temperature on the final properties of fabricated samples by determining their optimum values. Quasistatic compressive behaviors of the obtained highly porous materials were examined at a strain rate of 10–3 sec–1. The results show that the most suitable compressive properties of the highly porous states were obtained for the samples cold-pressed under 630 MPa and sintered at 620°C for 3 hours. According to the stress-strain behavior of the high-porous states, there is a plateau region with nearly constant flow stress and a large strain of about 70%. The densities of these high porous states were approximately 1.0 g/cm3, and the mean cell sizes amounted to about 0.6 mm. Using boric acid (H3BO3) powders differs from conventional processes in terms of superior comprehensive mechanical properties with static compressive strength and energy absorption of 18 MPa, and 12 MJ/m3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.G. Evans, J.W. Hutchinson, and M.F. Ashby, “Multifunctionality of cellular metal systems,” Prog. Mater. Sci., 43, 171–221 (1999); DOI: https://doi.org/10.1016/S0079-6425(98)00004-8.

    Article  Google Scholar 

  2. J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams,” Prog. Mater. Sci., 46, 559–632 (2001); DOI: https://doi.org/10.1016/S0079-6425(00)00002-5.

    Article  CAS  Google Scholar 

  3. L.J. Gibson and M.F. Ashby, Cellular Solids, Structure and Properties, Second ed., Cambridge University Press, Cambridge, UK (1997).

  4. Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, and K. Higashi, “Compressive properties of open-cellular SG91AA1 and AZ91 Mg,” Mater. Sci. Eng., A272, 455–458 (1999).

    Article  CAS  Google Scholar 

  5. Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai , H. Kanahashi, and K. Higashi, “Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05 g/cm3,” Mater. Sci. Lett., 18, 1477–1480 (1999); DOI: https://doi.org/10.1023/A:1006677930532.

    Article  CAS  Google Scholar 

  6. M.F. Ashby, T. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, “Metal Foams: A Design Guide,” Elsevier, 2000.

    Google Scholar 

  7. S.V. Gnyloskurenko, T. Nakamura, A.V. Byakova, Y.M. Podrezov, R. Ishikawa, and M. Maeda, “Development of lightweight Al alloy and technique,” Canadian Metallurgical Quarterly, 44, No. 1, 7–12 (2005); DOI: https://doi.org/10.1179/000844305794409742.

    Article  CAS  Google Scholar 

  8. V.I. Shapovalov, “Method for manufacturing porous articles,” U.S. Patent No. 5,181,549 (1993).

  9. C.J. Yu and J. Banhart, “Mechanical properties of metallic foams,” in: Proceedings Fraunhofer USA Metal Foam Symposium (1997), pp. 37–48.

  10. B. Jiang, N.Q. Zhao, C.S. Shi, X.W. Du, J.J. Li, and H.C. Man, “A novel method for making open cell aluminum foams by powder sintering process,” Mater. Lett. 59, 3333–3336 (2005); DOI: https://doi.org/10.1016/j.matlet.2005.05.068.

    Article  CAS  Google Scholar 

  11. M. Bram, C. Stiller, H.P. Buchkremer, D. Stöver, and H. Baur, “High-porosity titanium, stainless steel, and superalloy parts,” Adv. Eng. Mater., 2, 196–199 (2002); DOI: https://doi.org/10.1002/(SICI)1527-2648(200004)2.

    Article  Google Scholar 

  12. C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, “Processing of biocompatible porous Ti and Mg,” Scr. Mater., 45, 1147–1153 (2001); DOI: https://doi.org/10.1016/S1359-6462(01)01132-0.

    Article  CAS  Google Scholar 

  13. A. Laptev, M. Bram, H.P. Buchkremer, and D. Stöver, “Study of production route for titanium arts combining very high porosity and complex shape,” Powder Metall., 47, 85–92 (2004); DOI: https://doi.org/10.1179/003258904225015536.

    Article  CAS  Google Scholar 

  14. H.I. Bakan, “A novel water leaching and sintering process for manufacturing highly porous stainless steel,” Scr. Mater., 55, 203–206 (2006); DOI: https://doi.org/10.1016/j.scriptamat.2006.03.039.

    Article  CAS  Google Scholar 

  15. A. Byakova, A. Sirko, K. Mykhalenkov, Yu. Milman, S. Gnyloskurenko, and T. Nakamura, “Improvements in stabilisation and cellular structure of Al based foams with novel carbonate foaming agent,” High Temper. Mater. Proc. 26, No. 4, 239–246 (2007); DOI: https://doi.org/https://doi.org/10.1515/HTMP.2007.26.4.239.

  16. T. Koizumi, K. Kido, K. Kita, K. Mikado, S. Gnyloskurenko, and T. Nakamura, “Method of preventing shrinkage of aluminum foam using carbonates,” Metals, 2, 1–9 (2012); DOI: https://doi.org/10.3390/met2010001.

    Article  CAS  Google Scholar 

  17. Alexandra Byakova, Iegor Kartuzov, Svyatoslav Gnyloskurenko, Takashi Nakamura, “The role of foaming agent and processing route in mechanical performance of fabricated aluminum foams,” Adv. Mater. Sci. Eng., 4, 1–9 (2014); DOI: https://doi.org/10.1155/2014/607429.

  18. S.Y. Guven, “Powder metallurgy and metallic foams,” J. Techn. Sci., 1, No. 2, 22–28 (2011).

    Google Scholar 

  19. I. Yavuz, S.M. Baspinar, and H. Bayrakceken, “Use of metallic high porous state materials in vehicles,” Electronic J. Vehicle Technol., 3, 43–51 (2009).

    Google Scholar 

  20. M. Alizadeh and M. Mirzaei-Aliabadi, “Compressive properties and energy adsorption behavior of Al–Al2O3 composite foams synthesized by space-holder technique,” Mater. Design., 35, 419–424 (2012); DOI: https://doi.org/10.1016/j.matdes.2011.09.059.

    Article  CAS  Google Scholar 

  21. R. Surace and L.A.C. De Filippis, “Investigation and comparison of aluminum foams manufactured by different techniques,” Adv. Knowledge Appl. Practice, 1, 95–118 (2010); DOI: https://doi.org/10.5772/10353.

    Article  Google Scholar 

  22. Boric Oxide, Boric Acid, and Borates, in: Kirk-Othmer Encyclopedia of Chemical Technology, 4 (2001), pp. 187–212.

  23. H. Kolsky, “An investigation of the mechanical properties of materials at very high rates of loading,” Proc. R. Soc., B62, 676 (1949).

    Google Scholar 

  24. K.A. Dannemann Jr. and J. Lankford, “High strain rate compression of closed cell aluminum foams,” Mater. Sci. Eng. A, 293, 157–164 (2000); DOI: https://doi.org/10.1016/S0921-5093(00)01219-3.

    Article  Google Scholar 

  25. H. Bafti and A. Habibolahzadeh, “Production of aluminum high porous state by spherical carbamide space holder technique-processing parameters,” Mater. Design., 31, Issue 9, 4122–4129 (2010); DOI: https://doi.org/10.1016/j.matdes.2010.04.038.

    Article  CAS  Google Scholar 

  26. Y.Y. Zhao and D.X. Sun, “A novel sintering-dissolution process for manufacturing Al foams,’ Scr. Mater., 144, 105–110 (2000); DOI: https://doi.org/10.1016/S1359-6462(00)00548-0.

    Article  Google Scholar 

  27. S. Ramachandra, P.S. Kumar, and U. Ramamurty, “Impact energy absorption in Al foam at low velocities,” Scr. Mater., 49, 741–745 (2003); DOI: https://doi.org/10.1016/S1359-6462(03)00431-7.

    Article  CAS  Google Scholar 

  28. S. Okuma, “Sintering mechanism of aluminum, and the anodization of aluminum sintered bodies,” Electrocomp. Sci. Technol., 6, No. 1, 23–29 (1979); DOI: https://doi.org/10.1155/APEC.6.23.

    Article  CAS  Google Scholar 

  29. P. Kenesei, Cs. Kádár, Zs. Rajkovits, and J. Lendvai, “The influence of cell-size distribution on the plastic deformation in metal foams,” Scr. Mater., 50, 295–300 (2004); DOI: https://doi.org/10.1016/j.scriptamat.2003.09.046.

    Article  CAS  Google Scholar 

  30. A. Kim, M.A. Hasan, S.H. Nahm, and S.S. Cho, “Evaluation of compressive mechanical properties of Alfoams using electrical conductivity,” Comp. Struct. 71, No. 2, 191–198 (2005); DOI: https://doi.org/10.1016/j.compstruct.2004.10.016.

    Article  Google Scholar 

  31. Z. Wang, J. Shen, G. Lu, and L. Zhao, “Compressive behavior of closed-cell aluminum alloy foams at medium strain rates,” Mater. Sci. Eng. A, 528, 2326–2330 (2011); DOI: https://doi.org/10.1016/j.msea.2010.12.059.

    Article  CAS  Google Scholar 

  32. D.P. Papadopoulos, I.Ch. Konstantinidis, N. Papanastasiou, S. Skolianos, H. Lefakis, and D.N. Tsipas, “Mechanical properties of Al metal foams,” Mater. Lett., 58, 2574–2578 (2004); DOI: https://doi.org/10.1016/j.matlet.2004.03.004.

    Article  CAS  Google Scholar 

  33. E. Simone and L.J. Gibson, “Effects of solid distribution on the stiffness and strength of metallic foams,” Acta Mater., 46, No. 6, 2139–2150 (1998); DOI: https://doi.org/10.1016/S1359-6454(97)00421-7.

    Article  CAS  Google Scholar 

  34. A. Hassani, A. Habibolahzadeh, and H. Bafti, “Production of graded aluminum foams via powder space holder technique,” Mater. Design., 40, 510–515 (2012); DOI: https://doi.org/10.1016/j.matdes.2012.04.024.

    Article  CAS  Google Scholar 

  35. G. Ryan, A. Pandit, and D.P. Apatsidis, “Fabrication methods of porous metals for use in orthopaedic applications,” Biomaterials, 27, 2651–2670 (2006); DOI: https://doi.org/10.1016/j.biomaterials.2005.12.002.

    Article  CAS  Google Scholar 

  36. B. Jiang, N.Q. Zhao, C.S. Shi, X.W. Du, J.J. Li, and H.C. Man, “A novel method for making open cell aluminum foams by powder sintering process,” Mater. Lett., 59, 3333–3336 (2005); DOI: https://doi.org/10.1016/j.matlet.2005.05.068.

    Article  CAS  Google Scholar 

  37. M. Mirzaee, R. Changizi, and B. Alinejad, “Comparison of mechanical and electrical properties of foams fabricated by the methods of sinter followed cold press and hot press,” ARPN J. Eng. Appl. Sci., 7, 1533–1538 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by Eskisehir Osmangazi University, Research Foundation (project No: 201215010), Eskisehir, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nese O. Korpe.

Additional information

Published in Poroshkova Metallurgiya, Vol. 59, Nos. 11–12 (536), pp. 61–72, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korpe, N.O., Dürger, N.B., Dur, D. et al. Effects of Compacting Pressure and Sintering Temperature on the Properties of Highly Porous Pure Aluminum Produced with Boric Acid (H3BO3). Powder Metall Met Ceram 59, 661–671 (2021). https://doi.org/10.1007/s11106-021-00201-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-021-00201-9

Keywords

Navigation