Skip to main content
Log in

A Conjecture on the Neutrality of Matter

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Elaborating on an old conjecture by Blackett, we formulate a new conjecture about the neutrality of matter according to which any physical system possesses an active electric charge proportional to its mass. We discuss limits on the conjecture coming from existing laboratory experiments on the neutrality of matter and from the observation of the global surface electric field of the Earth. In a cosmological setting, we show that a cosmic rotation of the Universe is inevitable if our conjecture is true and if the magnetic fields observed today in large-scale gravitationally bounded objects and cosmic voids have a primordial origin. Finally, we discuss the possibility that the angular momentum of spiral galaxies could be a signature of a rotating Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In this paper, we use S.I. units when we report numerical values of physical quantities, and Lorentz-Heaviside units with \(c = \hbar = 1\) for theoretical considerations. The constant \(\varepsilon\) corresponds to \(\sqrt{4\pi } \beta\) in [1] where cgs units are used.

  2. If the pulse phase spectroscopy of 1RXS J1708-400910 is interpreted as proton cyclotron resonant scattering of soft photon from magnetic field, such a magnetar with rotational period of \(11 \hbox {s}\) would have an average surface magnetic field of about \(1.7 \times 10^{15} \hbox {G}\) [9]. Its magnetic moment and angular momentum would be \(\mu \simeq 8.5 \times 10^{29} \hbox {A}\cdot \hbox {m}^2\) and \(J \simeq 6.9 \times 10^{37} \hbox {J}\cdot \hbox {s}\), corresponding to \(\varepsilon \simeq 1.0 \times 10^3\). To our knowledge, this is the highest value of \(\varepsilon\) for astrophysical objects with directly detected magnetic field.

  3. A less stringent constraint on a (homogeneous) cosmic magnetic field of order of \(B_{\mathrm{cosmic}} \lesssim 10^{-9} \hbox {G}\) come from the analysis of the cosmic microwave background (CMB) radiation [24] and large-scale structures [25].

  4. In Eq. (5), we have used the upper limit (2) to obtain a constraint on the parameter \(\varepsilon\). This automatically implies that we are assuming an inflationary origin of cosmic magnetic fields. One can wonder, then, if the creation of cosmic magnetic fields is possible in inflationary theories with no inflaton. Indeed, as we showed in [34], cosmic magnetic fields are an inevitable consequence of inflation whatever is the mechanism responsible for it: strong, large-scale magnetic fields naturally emerge from quantum electromagnetic fluctuation in a (quasi-de Sitter) accelerated phase driven or not by an inflaton.

  5. A solution of the Einstein field equations describing a rotating Universe was first discovered by Godel in 1949 [36]. However, the Godel universe is stationary and thus disagrees with observations. More realistic rotating cosmological models have been studied since then, all being cosmological models of Bianchi type (see, e.g., [37,38,39]). In particular, quantum creation of (Bianchi IX) rotating universes has been studied in [40], an inflationary model (of Bianchi II type) with vorticity have been constructed in [41], and a cosmological model (of Bianchi VIII type) including a rotating dark energy component has bee analysed in [42].

  6. In the “tidal torque model”, galaxies acquire their angular momentum as they form by the tidal torques of neighboring protogalaxies (see, e.g., [54]). A correlation of the form (7) between their masses and angular momenta is also predicted by this model [55].

References

  1. Blackett, P.M.S.: The magnetic field of massive rotating bodies. Nature (London) 159, 658 (1947)

    Article  ADS  Google Scholar 

  2. Opher, R., Wichoski, U.F.: Origin of magnetic fields in the universe due to nonminimal gravitational-electromagnetic coupling. Phys. Rev. Lett. 78, 787 (1997)

    Article  ADS  Google Scholar 

  3. Schubert, G., Soderlund, K.M.: Planetary magnetic fields: observations and models. Phys. Earth Planet Int. 187, 92 (2011)

    Article  ADS  Google Scholar 

  4. Campanelli, L.: Can the Blackett conjecture directly account for the magnetic fields of celestial bodies and galaxies? And, is a lab-based test for the Blackett conjecture feasible? arXiv:2010.02734 [physics.gen-ph], submitted to Can. J. Phys

  5. Barrow, J.D., Gibbons, G.W.: Maximum magnetic moment to angular momentum conjecture. Phys. Rev. D 95, 064040 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ibrahim, A.I., Swank, J.H., Parke, W.: New evidence for proton cyclotron resonance in a magnetar strength field from SGR 1806–20. Astrophys. J. 584, L17 (2003)

    Article  ADS  Google Scholar 

  7. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford, England (1984)

    Google Scholar 

  8. Ozel, F., Freire, P.: Masses, radii, and the equation of state of neutron stars. Ann. Rev. Astron. Astrophys. 54, 401–440 (2016)

    Article  ADS  Google Scholar 

  9. Rea, N., Israel, G.L., Stella, L., Oosterbroek, T., Mereghetti, S., Angelini, L., Campana, S., Covino, S.: Evidence of a cyclotron feature in the spectrum of the anomalous x-ray pulsar 1rxs j170849–400910. Astrophys. J. 586, L65 (2003)

    Article  ADS  Google Scholar 

  10. Jimenez, J.B., Maroto, A.L.: Dark energy, non-minimal couplings and the origin of cosmic magnetic fields. JCAP 12, 025 (2010)

    Article  Google Scholar 

  11. Bressi, G., Carugno, G., Della Valle, F., Galeazzi, G., Ruoso, G., Sartori, G.: Testing the neutrality of matter by acoustic means in a spherical resonator. Phys. Rev. A. 83, 52101 (2011)

    Article  ADS  Google Scholar 

  12. Marinelli, M., Morpurgo, G.: The electric neutrality of matter: a summary. Phys. Lett. B. 137, 439 (1984)

    Article  ADS  Google Scholar 

  13. Baumann, J., Gahler, R., Kalus, J., Mampe, W.: Experimental limit for the charge of the free neutron. Phys. Rev. D. 37, 3107 (1988)

    Article  ADS  Google Scholar 

  14. Zyla, A.P., et al.: Particle data book. Prog. Theor. Exp. Phys. 202, 083C01 (2020)

    Google Scholar 

  15. Volland, H.: Atmospheric Electrodynamics. Springer, Berlin (1984)

    Book  Google Scholar 

  16. Siingh, D., Gopalakrishnan, V., Singh, R.P., Kamra, A.K., Singh, S., Pant, V., Singh, R., Singh, A.K.: The atmospheric global electric circuit: an overview. Atmos. Res. 84, 91 (2007)

    Article  Google Scholar 

  17. Rycroft, M.J.: Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol.-Terr. Phys. 90–91, 198 (2012)

    Article  ADS  Google Scholar 

  18. Subramanian, K.: The origin, evolution and signatures of primordial magnetic fields. Rep. Prog. Phys. 79, 076901 (2016)

    Article  ADS  Google Scholar 

  19. Vachaspati, T.: Progress on cosmological magnetic fields. [arXiv:2010.10525 [astro-ph.CO]]

  20. Neronov, A., Vovk, I.: Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73 (2010)

    Article  ADS  Google Scholar 

  21. Durrer, R., Neronov, A.: Cosmological magnetic fields: their generation, evolution and observation. Astron. Astroph. Rev. 21, 62 (2013)

    Article  ADS  Google Scholar 

  22. Lesch, H., Chiba, M.: Protogalactic evolution and magnetic fields. Astron. Astrophys. 297, 305L (1995)

    ADS  Google Scholar 

  23. Campanelli, L., Fogli, G.L., Kahniashvili, T., Marrone, A., Ratra, B.: Galaxy cluster number count data constraints on cosmological parameters. Eur. Phys. J. C 72, 2218 (2012)

    Article  ADS  Google Scholar 

  24. Barrow, J.D., Ferreira, P.G., Silk, J.: Constraints on a primordial magnetic field. Phys. Rev. Lett. 78, 3610–3613 (1997)

    Article  ADS  Google Scholar 

  25. Kahniashvili, T., Tevzadze, A.G., Sethi, S.K., Pandey, K., Ratra, B.: Primordial magnetic field limits from cosmological data. Phys. Rev. D 82, 083005 (2010)

    Article  ADS  Google Scholar 

  26. Ellis, G.F.R., van Elst, H.: Cosmological models: Cargese lectures 1998. NATO Sci. Ser. C 541, 1 (1999) [arXiv:gr-qc/9812046 [gr-qc]]

  27. Caprini, C., Ferreira, P.G.: Constraints on the electrical charge asymmetry of the universe. JCAP 02, 006 (2005)

    Article  ADS  Google Scholar 

  28. Ciufolini, I., Wheeler, J.A.: Gravitation and Inertia. Princeton University Press, Princeton (1995)

    Book  MATH  Google Scholar 

  29. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1971)

    MATH  Google Scholar 

  30. Ade, P.A.R.: [Plank Collaboration], Plank 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, 13 (2015)

    Google Scholar 

  31. Saadeh, D., Feeney, S.M., Pontzen, A., Peiris, H.V., McEwen, J.D.: How isotropic is the Universe? Phys. Rev. Lett. 117, 131302 (2016)

    Article  ADS  Google Scholar 

  32. Su, S.-C., Chu, M.-C.: Is the universe rotating? Astrophys. J. 703, 354 (2009)

    Article  ADS  Google Scholar 

  33. Bamba, K., Odintsov, S.D.: Inflationary cosmology in modified gravity theories. Symmetry 7, 220–240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Campanelli, L.: Phys. Rev. Lett. 111, 061301 (2013)

    Article  ADS  Google Scholar 

  35. Gamow, G.: Rotating universe? Nature 158, 549 (1946)

    Article  ADS  Google Scholar 

  36. Godel, K.: An Example of a new type of cosmological solutions of Einstein’s field equations of graviation. Rev. Mod. Phys. 21, 447–450 (1949)

    Article  ADS  MATH  Google Scholar 

  37. Matzner, R.A., Shepley, L.C., Warren, J.B.: Dynamics of SO(3, R)-homogeneous cosmologies. Ann. Phys. 57, 401 (1970)

    Article  ADS  Google Scholar 

  38. Hawking, S.W.: On the rotation of the universe. Mon. Not. Roy. AstronSoc. 142, 129 (1969)

    Article  ADS  Google Scholar 

  39. Barrow, J.D., Juszkiewicz, R., Sonoda, D.H.: Universal rotation—How large can it be? Mon. Not. Roy. Astron. Soc. 213, 917 (1985)

    Article  ADS  Google Scholar 

  40. Panov, V.F., Kuvshinova, E.V.: Quantum birth of the universe with rotation. Grav. Cosmol. 10, 156 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Kuvshinova, E.V., Panov, V.F., Sandakova, O.V.: Rotating nonstationary cosmological models and astrophysical observations. Grav. Cosmol. 20, 138 (2014)

    Article  ADS  Google Scholar 

  42. Kuvshinova, E.V., Pavelkin, V.N., Panov, V.F., Sandakova, O.V.: Bianchi type VIII cosmological models with rotating dark energy. Grav. Cosmol. 20, 141 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. Birch, P.: Is the Universe rotating? Nature 298, 451 (1982)

    Article  ADS  Google Scholar 

  44. Kendall, D.G., Young, G.A.: Indirectional statistics and the significance of an asymmetry discovered by Birch. Mon. Not. Roy. AstronṠoc. 207, 637 (1984)

    Article  ADS  Google Scholar 

  45. Bietenholz, M.F.: Determining dependences between directional quantities and position on a sphere. Astronom. J. 91, 1249 (1986)

    Article  ADS  Google Scholar 

  46. Longo, M.J.: “Does the Universe Have a Handedness,” [arXiv:astro-ph/0703325 [astro-ph]]

  47. Longo, M.J.: Detection of a Dipole in the Handedness of Spiral Galaxies with Redshifts \(z \sim 0.04\). Phys. Lett. B 699, 224 (2011)

    Article  ADS  Google Scholar 

  48. Shamir, L.: Multipole alignment in the large-scale distribution of spin direction of spiral galaxies. [arXiv:2004.02963 [astro-ph.GA]]

  49. Shamir, L.: Patterns of galaxy spin directions in SDSS and Pan-STARRS show parity violation and multipoles. Astrophys. Space Sci. 365, 136 (2020)

    Article  ADS  Google Scholar 

  50. Shamir, L.: Galaxy spin direction distribution in HST and SDSS show similar large-scale asymmetry. [arXiv:2011.03723 [astro-ph.CO]]

  51. Yu, H.R., Motloch, P., Pen, U.L., Yu, Y., Wang, H., Mo, H., Yang, X., Jing, Y.: Probing primordial chirality with galaxy spins. Phys. Rev. Lett. 124, 101302 (2020)

    Article  ADS  Google Scholar 

  52. Li, Li-Xin.: Effect of the global rotation of the universe on the formation of galaxies. Gen. Rel. Grav. 30, 497 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Padmanabhan, T.: Structure Formation in the Universe. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  54. Barnes, J., Efstathiou, G.: Angular momentum from tidal torques. Astrophys. J. 319, 575 (1987)

    Article  ADS  Google Scholar 

  55. Heavens, A., Peacock, J.: Tidal torques and local density maxima. Mon. Not. Roy. AstronSoc. 232, 339 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Campanelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campanelli, L. A Conjecture on the Neutrality of Matter. Found Phys 51, 56 (2021). https://doi.org/10.1007/s10701-021-00462-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00462-9

Navigation