Skip to main content
Log in

Viscoplastic constitutive model of a nickel-based superalloy under multiaxial loading conditions

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Based on Chaboche constitutive model, a viscoplastic constitutive model of nickel-based alloy under multiaxial loading is proposed by introducing Lemaitre damage model and non-proportional hardening factor. Lemaitre damage model can characterize the effect of microscopic defects on the fatigue behavior and non-proportional hardening factor is used to describe non-proportional hardening phenomenon. Subsequently, the stress–strain hysteresis loops at room and high temperatures under different loading conditions are simulated by the proposed constitutive model. Comparison between experiments and simulations confirms that the proposed model can reasonably predict the fatigue behavior of nickel-based alloy under different multiaxial loadings. At last, the fatigue life predictions under different multiaxial loadings are investigated, and comparison between experiments and simulations verifies the accuracy of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. F.P.E. Dunne, D.R. Hayhurst, Proc. Roy. Soc. A Math. Phy. Eng. Sci. 437 (1992) 545–566.

  2. Y.C. Lin, H. Yang, D.G. He, J. Chen, Mater. Des. 183 (2019) 108122.

  3. Y.C. Lin, D.X. Wen, M.S. Chen, X.M. Chen, Appl. Phys. A 122 (2016) 805.

  4. Y.C. Lin, D.X. Wen, M.S. Chen, Y.X. Liu, X.M. Chen, X. Ma, J. Mater. Res. 31 (2016) 2415–2429.

  5. D.D. Chen, Y.C. Lin, Y. Zhou, M.S. Chen, D.X, Wen, J. Alloy. Compd. 708 (2017) 938–946.

  6. C. Dong, Z.D. Liu, Z.Z. Chen, Z. Liu, J.Z. Zheng, X.T. Wang, J. Iron Steel Res. Int. 27 (2020) 820–833.

  7. W. Jia, W. Wen, L. Fang, Compos. Struct. 235 (2020) 111758.

  8. J.L. Chaboche, Int. J. Plasticity 5 (1989) 247–302.

  9. S.P. Zhu, Q. Liu, W.W. Peng, X. Zhang, Int. J. Mech. Sci. 142–143 (2018) 502–517.

  10. S.P. Zhu, Q. Liu, J. Zhou, Z.Y. Yu, Fatigue Fract. Eng. Mater. Struct. 41 (2018) 1291–1305.

  11. J. Li, Q. Li, J. Jiang, J. Dai, Fatigue Fract. Eng. Mater. Struct. 41 (2018) 1637–1645.

  12. K. Kolasangiani, K. Farhangdoost, M. Shariati, A. Varvani-Farahani, Int. J. Mech. Sci. 144 (2018) 24–32.

  13. Q.J. Ashraf, R.G.V. Prasad, R. Sandhya, K. Laha, G.A. Harmain, Fatigue Fract. Eng. Mater. Struct. 41 (2018) 336–347.

  14. A. Benaarbia, Y. Rae, W. Sun, Int. J. Mech. Sci. 136 (2018) 36–49.

  15. G.H. Farrahi, A. Shamloo, M. Felfeli, M. Azadi, Mater. Des. 56 (2013) 245–253.

  16. D. Benasciutti, J. Srnec Novak, L. Moro, F. De Bona, A. Stanojević, Fatigue Fract. Eng. Mater. Struct. 41 (2018) 1364–1377.

  17. D. Benasciutti, F. De Bona, L. Moro, J. Srnec Novak, Procedia Eng. 213 (2018) 743–753.

  18. A. Bahloul, M.M. Mhalla, C. Bouraoui, J. Alloy. Compd. 748 (2018) 363–374.

  19. N. Deng, T. Kuwabara, Y.P. Korkolis, Int. J. Mech. Sci. 138 (2018) 383–397.

  20. H. Ziegler, Quart. Appl. Math. 7 (1959) 55–65.

  21. X.J. Yang, Q. Gao, X.F. Sun, Journal of Aerospace Power 9 (1994) 211–214.

  22. D.Q. Shi, X.G. Yang, Y.R. Wang, Journal of Aerospace Power 20 (2005) 60–65.

  23. A.U. Haq, X.G. Yang, D.Q. Shi, Strength Mater. 50 (2018) 98–106.

  24. A. Surmiri, A. Nayebi, H. Rokhgireh, Int. J. Mech. Sci. 137 (2018) 295–303.

  25. N.R. Gates, A. Fatemi, J. Eng. Mater. Technol. 141 (2019) 011009.

  26. J.H. Wang, D.G. Shang, D.H. Li, Mater. High Temperature 35 (2017) 469–481.

  27. G. Anzellotti, PNAS 84 (1987) 5034–5037.

  28. L.M. Kachanov, Introduction to continuum damage mechanics, Springer Science, Business Media Dordrecht, Berlin, Germany, 1986.

  29. H.R. Li, Y. Peng, Y. Liu, M. Zhang, J. Iron Steel Res. Int. 25 (2018) 1094–1103.

  30. J. Lemaitre, A. Plumtree, J. Eng. Mater. Technol. 101 (1979) 284–292.

  31. J. Lemaitre, J.L. Chaboche, J. Eng. Mech. 119 (1993) 642–643.

  32. D.F. Socie, G.B. Marquis, Multiaxial fatigue, PA: Society of Automotive Engineers Inc., Warrendale, USA, 2000.

  33. Z.R. Wu, X. Li, L. Fang, Y.D. Song, J. Mater. Eng. Perform. 27 (2018) 3144–3152.

  34. W. Ramberg, W.R. Osgood, NTRS 902 (1943) NACA-TN-902.

  35. A.A. Saad, C.J. Hyde, W. Sun, T.H. Hyde, Mater. High Temperature 28 (2011) 212–218.

  36. J. Sun, H. Yuan, Int. J. Fatigue 119 (2019) 89–101.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Wb., Li, X., Chen, Z. et al. Viscoplastic constitutive model of a nickel-based superalloy under multiaxial loading conditions. J. Iron Steel Res. Int. 28, 1190–1202 (2021). https://doi.org/10.1007/s42243-021-00583-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00583-5

Keywords

Navigation