Skip to main content
Log in

Tunable omnidirectional band gap properties of 1D plasma annular periodic multilayer structure based on an improved Fibonacci topological structure

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the characteristics of the omnidirectional band gap (OBG) for one-dimensional plasma cylindrical photonic crystals based on an improved Fibonacci topological structure are researched. The influences of the azimuthal mode number (m), incident angle (θ), plasma thickness (dp), and plasma frequency (ωp) on the OBG are discussed. These conclusions are drawn that m has a strong ability to regulate the OBG. As m increased, the OBG will be broadened. The θ has a similar ability in adjusting the photonic band gap (PBG), a larger θ will get a wider PBG. When θ = 85°, the TM wave achieves the PBG in the range of 0–3 (2πc/d). So the ultra-wide PBG can be got by the large θ. Contrary to m, dp has an inverse relationship with the bandwidth of the OBG. As dp increases, the bandwidth of the OBG will be decreased. Fortunately, the frequency range of the OBG can be controlled by dp. But ωp cannot regulate the bandwidth of the OBG. Increasing m and reducing dp appropriately can obtain a lower frequency and wider OBG. This feature is very beneficial to designing devices such as waveguides, filters, and antenna substrates. In addition, an interesting phenomenon can be found when m = 2, an extra high reflection zone can be inspired in the TM wave. It provides a theoretical support for designing the narrowband filters without introducing any physical defect layers in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aly, A.H., Sabra, W., Elsayed, H.A.: Dielectric and superconducting photonic crystals. J. Supercond. Novel Magn. 26, 553–560 (2013)

    Article  Google Scholar 

  • Anusha, N.P., Sharan, A.: Numerical study of 1D wave propagation through double negative photonic crystal. IOP Conf. Ser. Mater. Sci. Eng. 360, 012052 (2018)

    Article  Google Scholar 

  • Chavez-Castillo, B.A., Pérez-Huerta, J.S., Madrigal-Melchor, J., et al.: A wide band porous silicon omnidirectional mirror for the near infrared range. J. Appl. Phys. 127, 203106 (2020)

    Article  Google Scholar 

  • Chen, M.-S., Chien-Jang, Wu., Yang, T.-J.: Wave properties of an annular periodic multilayer structure containing the single-negative materials. Phys. Lett. A 373, 3594–3600 (2009)

    Article  Google Scholar 

  • Chen, M.-S., Chien-Jang, Wu., Yang, T.-J.: Narrowband reflection-and-transmission filter in an annular defective photonic crystal containing an ultrathin metallic film. Opt. Commun. 285, 3143–3149 (2012)

    Article  Google Scholar 

  • Chena, M.-S., Chien-Jang, Wu., Yang, T.-J.: Optical properties of a superconducting annular periodic multilayer structure. Solid State Commun. 149, 1888–1893 (2009)

    Article  Google Scholar 

  • Dou, Y., Qiucui, Li., Xunya, J.: New dynamic mechanism of interplay between nonlinearity and Bragg scattering in a femtosecond all-optical photonic crystal switch. J. Opt. 21, 055501 (2019)

    Article  Google Scholar 

  • Feng, Wu., Chen, M., Liu, D., et al.: Broadband omnidirectional near-infrared reflector based on an angle-insensitive photonic band gap. Appl. Opt. 59(30), 9621–9625 (2020)

    Article  Google Scholar 

  • Hu, C.A., Wu, C.J., Yang, Z.J., Yang, S.L.: Analysis of optical properties in cylindrical dielectric photonic crystal. Opt. Commun. 291, 424–434 (2013)

    Article  Google Scholar 

  • Ilkhechi, N.N., Kaleji, B.K.: Temperature stability and photocatalytic activity of nanocrystalline cristobalite powders with Cu dopant. SILICON 9, 943–948 (2017)

    Article  Google Scholar 

  • Ilkhechi, N.N., Ahmadi, A., Kaleji, B.K.: Optical and structural properties of nanocrystalline anatase powders doped by Zr, Si and Cu at high temperature. Opt. Quantum Electron. 47, 2423–2434 (2015a)

    Article  Google Scholar 

  • Ilkhechi, N.N., Dousi, F., Kaleji, B.K., et al.: Optical and structural properties of TiO2 2 nanocomposite doped by Si and Cu at high temperature. Opt. Quantum Electron. 47, 1751–1763 (2015b)

    Article  Google Scholar 

  • Ilkhechi, N.N., Alijani, M., Kaleji, B.K.: Optical and structural properties of TiO2 nanopowders with Co/Ce doping at various temperature. Opt. Quantum Electron. 48, 148 (2016a)

    Article  Google Scholar 

  • Ilkhechi, N.N., Ghobadi, N., Kaleji, B.K., et al.: Effect of Sn and La doping on optical and hydrophilic properties of TiO2 thin film. Opt. Quantum Electron. 48, 416 (2016b)

    Article  Google Scholar 

  • Ji-jiang, Wu., Gao, J.-X.: Low temperature sensor based on one-dimensional photonic crystals with a dielectric superconducting pair defect. Optik 126, 5368–5371 (2015)

    Article  Google Scholar 

  • Kumar, V., Singh, K.S., et al.: Broadening of omnidirectional photonic band gap in Si-based one dimensional photonic crystals. Prog. Electromagn. Res. M 14, 101–111 (2011)

    Article  Google Scholar 

  • Li, C.-Z., Liu, S.-B., Kong, X.-K., Zhang, H.-F., et al.: A novel comb-like plasma photonic crystal filter in the presence of evanescent wave. IEEE Trans. Plasma Sci. 39(10), 1969–1973 (2011)

    Article  Google Scholar 

  • Liles, A.A., Debnath, K., et al.: Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector. Opt. Lett. 41(5), 253382 (2016)

    Article  Google Scholar 

  • Ma, Yu., Zhang, H.-F., Cai-Xing, Hu.: Tunable omnidirectional band gap and polarization splitting in one-dimensional magnetized plasma photonic crystals with a quasi-periodic topological structure. J. Opt. 22, 025101 (2020)

    Article  Google Scholar 

  • Naderi Dehnavi, Z., Ranjbar Askari, H., Malekshahi, M., et al.: Investigation of tunable omnidirectional band gap in 1D magnetized full plasma photonic crystals. Phys. Plasmas 24(9), 093517 (2017)

    Article  Google Scholar 

  • Nair, R.V., Vijaya, R.: Photonic crystal sensors: an overview. Prog. Quantum Electron. 34, 89–134 (2010)

    Article  Google Scholar 

  • Najibi Ilkhechi, N., Koozegar Kaleji, B.: Effect of Cu2+, Si4+ and Zr4+ dopant on structural, optical and photocatalytic properties of titania nanopowders. Opt. Quantum Electron. 48, 347 (2016)

    Article  Google Scholar 

  • Pitruzzello, G., Krauss, T.F.: Photonic crystal resonances for sensing and imaging. J. Opt. 105259, R1 (2018)

    Google Scholar 

  • Qiang, H.-X., Jiang, L.-Y., Li, X.-Y., Jia, W.: Different kinds of band-pass filters based on one-dimensional photonic crystal heterostructures. Optik 122, 1836–1839 (2011)

    Article  Google Scholar 

  • Renilkumar, M., Nair, P., et al.: Properties of defect modes in geometrically chirped one-dimensional photonic crystals. Opt. Mater. 33, 853–858 (2011)

    Article  Google Scholar 

  • Rüdiger, S.-G., Tobia, G., Holger, H., et al.: Cylindric resonators with coaxial Brag reflectors. Proc. SPIE Int. Soc. Opt. Eng. 6038, 603827 (2006)

    Google Scholar 

  • Singh, B.K., Chaudhari, M.K., Pandey, P.C., et al.: Photonic and omnidirectional band gap engineering in one-dimensional photonic crystals consisting of linearly graded index material. J. Lightwave Technol. 34(10), 1 (2016)

    Article  Google Scholar 

  • Sreejith, K.P., Mathew, V.: Investigation of transmission properties in one-dimensional quasi-periodic superconducting photonic crystal. J. Supercond. Novel Magn. 31(6), 1–6 (2017)

    Google Scholar 

  • Srivastava, S.K., Aghajamali, A.: Investigation of reflectance properties in 1D ternary annular photonic crystal containing semiconductor and high-Tc superconductor. J. Supercond. Novel Magn. 29, 1423–1431 (2016)

    Article  Google Scholar 

  • Tolmachev, V.A., Perova, T.S., Moore, R.A.: Method of construction of composite one dimensional photonic crystal with extended photonic band gaps. Opt. Express 13(21), 8433–8441 (2005)

    Article  Google Scholar 

  • Xiao, X., Chen, R.: Study of omnidirectional reaction bandgap extension in one-dimensional quasi-periodic metallic photonic crystal. NANO: Brief. Rep. Rev. 10(6), 1550088 (2015)

    Article  Google Scholar 

  • Xue, F., Liu, S.-B., Zhang, H.-F., et al.: The theoretical analysis of omnidirectional photonic band gaps in the one-dimensional ternary plasma photonic crystals based on Pell quasi-periodic structure. Opt. Quantum Electron. 49(1), 19 (2017)

    Article  Google Scholar 

  • Yip, C.T., Huang, H., Zhou, L., Xie, K., et al.: Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach. Adv. Mater. 23(47), 5624–5628 (2011)

    Article  Google Scholar 

  • Zhang, H.-F., Liu, S.-B., Kong, X.-K., et al.: Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer. Phys. Plasmas 19(2), 022103 (2012)

    Article  Google Scholar 

  • Zhang, H.-F., Zhen, J.-P., He, W.-P.: Omnidirectional photonic band gaps enhanced by Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals. Optik 124(20), 4182–4187 (2013)

    Article  Google Scholar 

  • Zhang, Y., Zhixin, Wu., Cao, Y., Zhang, H.: Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal. Opt. Commun. 338, 168–173 (2015)

    Article  Google Scholar 

  • Zhao, Y., Zhang, Y., Guo, X., et al.: Tunable omnidirectional photonic band gap of one-dimensional photonic crystals containing Dirac semimetals. J. Appl. Phys. 122, 223108 (2017a)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No. K201927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, HM., Wan, BF., Wang, PX. et al. Tunable omnidirectional band gap properties of 1D plasma annular periodic multilayer structure based on an improved Fibonacci topological structure. Opt Quant Electron 53, 256 (2021). https://doi.org/10.1007/s11082-021-02912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02912-0

Keywords

Navigation