Skip to main content
Log in

Plasmon assisted tunnelling through silver nanodisk dimer‐optical properties and quantum effects

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Tunnelling is a quantum mechanical effect which becomes significant in plasmonic systems with nanogap regions. In a system of closely spaced metal nanoparticles plasmon tunnelling plays an important role in the transfer of energy and hence governs the optical properties of the system. Plasmon assisted tunnelling through a system depends on the skin depth of the material in consideration, which in turn is controlled by the wavelength of incident light. Here, we present, ‘gradient potential dependent skin-depth theory (GPST)’ explaining resonant plasmons assisted tunnelling through metal nanoparticles for the operating wavelength of 1.1 μm. For a system of silver nanodisk dimer with sub-nanometer interparticle distance, the nanogap region between adjacent nanodisks give rise to gradient potential forming the tunnelling zone and is verified by finite difference time domain computational method. The energy eigenvalues and corresponding eigen frequencies are obtained for the dimer system. The proposed GPST can predict the behaviour of plasmon tunnel diode, plasmonic Josephson junction assisted superconductivity, plasmon tunnelled field-effect transistors etc. significantly improving the performance of integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avrutsky, I., Zhao, Y., Kochergin, V.: Surface-plasmon-assisted resonant tunnelling of light through a periodically corrugated thin metal film. Opt. Lett. 25(9), 595–597 (2000)

    Article  ADS  Google Scholar 

  • Chen, P.Y., Hajizadegan, M., Sakhdari, M., Alu, A.: Giant photoresponsivity of midinfrared hyperbolic metamaterials in the photon-assisted-tunnelling regime. Phys. Rev. Appl. 5(4), 041001

    Article  ADS  Google Scholar 

  • de Abajo, F.J.G., Gomez-Santos, G., Blanco, L.A., Borisov, A.G., Shabanov, S.V.: Tunneling mechanism of light transmission through metallic films. Phys. Rev. Lett. 95(6), 067403 (2005)

    Article  ADS  Google Scholar 

  • de Vega, S., de Abajo, F.J.G.: Plasmon generation through electron tunnelling in graphene. ACS Photon. 4(9), 2367–2375 (2017)

    Article  Google Scholar 

  • Garg, M., Kern, K.: Attosecond coherent manipulation of electrons in tunnelling microscopy. Science 367(6476), 411–415 (2020)

    Article  ADS  Google Scholar 

  • Haes, A.J., Van Duyne, R.P.: A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124(35), 10596–10604 (2002)

    Article  Google Scholar 

  • Huang, L., Maerkl, S.J., Martin, O.J.: Integration of plasmonic trapping in a microfluidic environment. Opt. Express 17(8), 6018–6024 (2009)

    Article  ADS  Google Scholar 

  • Huang, J.S., Callegari, V., Geisler, P., Brüning, C., Kern, J., Prangsma, J.C., Wu, X., Feichtner, T., Ziegler, J., Weinmann, P., Kamp, M.: Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1(1), 1–8 (2010)

    Google Scholar 

  • Lan, Y.C., Chang, Y.C., Lee, P.H.: Manipulation of tunnelling frequencies using magnetic fields for resonant tunnelling effects of surface plasmons. Appl. Phys. Lett. 90(17), 171114 (2007)

    Article  ADS  Google Scholar 

  • Lan, Y.C., Chang, C.J., Lee, P.H.: Resonant tunnelling effects on cavity-embedded metal film caused by surface-plasmon excitation. Opt. Lett. 34(1), 25–27 (2009)

    Article  ADS  Google Scholar 

  • Liu, W.C., Tsai, D.P.: Optical tunnelling effect of surface plasmon polaritons and localized surface plasmon resonance. Phys. Rev. B 65(15), 155423 (2002)

    Article  ADS  Google Scholar 

  • Liu, S., Wolf, M., Kumagai, T.: Plasmon-assisted resonant electron tunneling in a scanning tunneling microscope junction. Phys. Rev. Lett. 121, 226802–226801 (2018)

    Article  ADS  Google Scholar 

  • Maier, S.A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.A.G., Atwater, H.A.: Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13(9), 1501–1505 (2001)

    Article  Google Scholar 

  • Makarenko, K.S., Hoang, T.X., Duffin, T.J., Radulescu, A., Kalathingal, V., Lezec, H.J., Chu, H.S., Nijhuis, C.A.: Efficient surface plasmon polariton excitation and control over outcoupling mechanisms in metal–insulator–metal tunneling junctions. Adv. Sci. 7(8), 1900291 (2020)

    Article  Google Scholar 

  • Martin-Moreno, L., Garcia-Vidal, F.J., Lezec, H.J., Pellerin, K.M., Thio, T., Pendry, J.B., Ebbesen, T.W.: Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86(6), 1114–1117 (2001)

    Article  ADS  Google Scholar 

  • Nagel, P.M., Robinson, J.S., Harteneck, B.D., Pfeifer, T., Abel, M.J., Prell, J.S., Neumark, D.M., Kaindl, R.A., Leone, S.R.: Surface plasmon assisted electron acceleration in photoemission from gold nanoparticles. Chem. Phys. 414, 106–111 (2013)

    Article  Google Scholar 

  • Park, J., Kim, H., Lee, I.M., Kim, S., Jung, J., Lee, B.: Resonant tunnelling of surface plasmon polariton in the plasmonic nano-cavity. Opt. Express 16(21), 16903–16915 (2008)

    Article  ADS  Google Scholar 

  • Popov, E., Neviere, M., Enoch, S., Reinisch, R.: Theory of light transmission through subwavelength periodic hole arrays. Phys. Rev. B 62(23), 16100–16108 (2000)

    Article  ADS  Google Scholar 

  • Pshenichnyuk, I.A., Nazarikov, G.I., Kosolobov, S.S., Maimistov, A.I., Drachev, V.P.: Edge-plasmon assisted electro-optical modulator. Phys. Rev. B 100(19), 195434 (2019)

    Article  ADS  Google Scholar 

  • Ramazani, A., Shayeganfar, F., Jalilian, J., Fang, N.X.: Exciton-plasmon polariton coupling and hot carrier generation in two-dimensional SiB semiconductors: a first-principles study. Nanophotonics 9(2), 337–349 (2020)

    Article  Google Scholar 

  • Schaadt, D.M., Feng, B., Yu, E.T.: Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86(6), 063106 (2005)

    Article  ADS  Google Scholar 

  • Sidorenko, S., Martin, O.J.F.: Resonant tunnelling of surface plasmon-polaritons. Opt. Express 15(10), 6380–6388 (2007)

    Article  ADS  Google Scholar 

  • Smith, W.C., Kou, A., Xiao, X., Vool, U., Devoret, M.H.: Superconducting circuit protected by two-Cooper-pair tunnelling. NPJ Quant. Inf. 6(1), 1–9 (2020)

    Article  ADS  Google Scholar 

  • Stellacci, F., Bauer, C.A., Meyer-Friedrichsen, T., Wenseleers, W., Alain, V., Kuebler, S.M., Pond, S.J.K., Zhang, Y., Marder, S.R., Perry, J.W.: Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv. Mater. 14(3), 194–198 (2002)

    Article  Google Scholar 

  • Stockman, M.I.: Nanoplasmonics: the physics behind the applications. Phys. Today 64(2), 39–44 (2011)

    Article  Google Scholar 

  • Stolz, A., Berthelot, J., Mennemanteuil, M.M., Colas des Francs, G., Markey, L., Meunier, V., Bouhelier, A.: Nonlinear photon-assisted tunnelling transport in optical gap antennas. Nano Lett. 14(5), 2330–2338 (2014)

    Article  ADS  Google Scholar 

  • Svintsov, D., Devizorova, Z., Otsuji, T., Ryzhii, V.: Plasmons in tunnel-coupled graphene layers: backward waves with quantum cascade gain. Phys. Rev. B 94(11), 115301 (2016)

    Article  ADS  Google Scholar 

  • Uskov, A.V., Khurgin, J.B., Protsenko, I.E., Smetanin, I.V., Bouhelier, A.: Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling. Nanoscale 8(30), 14573–14579 (2016)

    Article  ADS  Google Scholar 

  • Wang, G., Lu, H., Liu, X., Mao, D., Duan, L.: Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt. Express 19(4), 3513–3518 (2011)

    Article  ADS  Google Scholar 

  • Wang, P., Krasavin, A.V., Nasir, M.E., Dickson, W., Zayats, A.V.: Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat. Nanotechnol. 13(2), 159–164 (2018)

    Article  ADS  Google Scholar 

  • Xiao, S., Mortensen, N.A.: Resonant-tunnelling-assisted crossing for subwavelength plasmonic slot waveguides. Opt. Express 16(19), 14997–15005 (2008)

    Article  ADS  Google Scholar 

  • Xu, C., Li, C., Jin, Y.: Programmable organic-free negative differential resistance memristor based on plasmonic tunnel junction. Small 16(34), 2002727 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the support of “TIFAC-Center of Relevance and Excellence in Fiber Optics and Optical Communication” at Delhi College of Engineering, Delhi, through Mission Reach Program of Technology Vision 2020, Government of India and Sharda University for providing various resources.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Rani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dillu, V., Rani, P., Kalra, Y. et al. Plasmon assisted tunnelling through silver nanodisk dimer‐optical properties and quantum effects. Opt Quant Electron 53, 260 (2021). https://doi.org/10.1007/s11082-021-02866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02866-3

Keywords

Navigation