Skip to main content
Log in

Structuring a laser beam subject to optical Kerr effect for improving its focusing properties

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The use of laser beams made up of ultrafast pulses for the processing of materials can be bothered by the consequences of optical Kerr effect (OKE) cumulated by the propagation through optical devices (windows, laser crystal, prisms, lenses, …). The latter are mainly a reduction of the intensity in the focal plane accompanied by a distortion of the temporal and spatial pulse shape. We present a comparative study on such distortions for Gaussian, super-Gaussian and LG10 (one central peak surrounded by a ring) beams. It is demonstrated that the LG10 beam shows sensitivity to OKE which is smaller than that of the Gaussian LG00, and super-Gaussian beams. As a result, the focusing performances of the LG10 beam are quite superior to that observed with Gaussian or super-Gaussian beam: a higher on-axis intensity, a narrower intensity pattern, and a temporal shape and an energy fluence almost undistorted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. M. Deubel, G. Freymann, M. Wegener, S. Pereira, K. Bush, C. Soukoulis, Direct laser writing of three-dimensional photonic-crystal template for telecommunications. Nat. Mater. 3, 444 (2004)

    Article  ADS  Google Scholar 

  2. M. Beresna, M. Gecevicius, P.G. Kazansky, Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photon. 6, 293 (2014)

    Article  Google Scholar 

  3. Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, K. Midorikawa, Direct laser writing of sub-50nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab. Chip 13, 1626 (2013)

    Article  Google Scholar 

  4. M. Ams, G.D. Marshall, P. Dekker, J.A. Piper, M.J. Withford, Ultrafast laser written active devices. Laser Photon. Rev. 3, 535 (2009)

    Article  ADS  Google Scholar 

  5. B.H. Cumpston et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51 (1999)

    Article  ADS  Google Scholar 

  6. F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, K. Sugioka, Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass. Sensors 14, 19402 (2014)

    Article  ADS  Google Scholar 

  7. S. Gross, M. Withford, Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332 (2015)

    Article  Google Scholar 

  8. A. Campillo, S. Shapiro, B. Suydam, Periodic breakup of optical beams due to self-focusing. Appl. Phys. Lett. 23, 628 (1973)

    Article  ADS  Google Scholar 

  9. M. Feit, J. Fleck, Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams. JOSA B5, 633 (1988)

    Article  ADS  Google Scholar 

  10. J. Caumes, L. Videau, C. Rouyer, E. Freysz, Direct measurement of wave-front distortion induced during second-harmonic generation : application to breakup-integral compensation. Opt. Lett. 29, 899 (2004)

    Article  ADS  Google Scholar 

  11. G. Zhu, J. Howe, M. Durst, W. Zipfel, C. Xu, Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13, 2153 (2005)

    Article  ADS  Google Scholar 

  12. C. Jing, Z. Wang, Y. Cheng, Characteristics and applications of spatiotemporally focused femtosecond laser plulses. Appl. Sci. 6, 428 (2016)

    Article  Google Scholar 

  13. A. Hasnaoui, M. Fromager, K. Aït-Ameur, About the validity of the parabolic approximation in Kerr lensing effect. Optik 193, 162986 (2019)

    Article  ADS  Google Scholar 

  14. R.W. Boyd, S.G. Lukishova, Y.R. Shen, Self-focusing: past and present, fundamentals and prospects. Springer Top. Appl. Phys. (2009). https://doi.org/10.1007/978-0-387-34727-1

    Article  Google Scholar 

  15. E.S. Bliss, J.T. Hunt, P.A. Renard, G.E. Sommargren, H.J. Weaver, Effects of nonlinear propagation on laser focusing properties. IEEE J. Quantum Electron. 12, 402 (1976)

    Article  ADS  Google Scholar 

  16. A.J. Campillo, R.A. Fisher, R.C. Hyer, L. Shapiro, Streak camera investigation of the self-focusing onset in glass. Appl. Phys. Lett. 25, 408 (1974)

    Article  ADS  Google Scholar 

  17. B. Yu, Z. Lin, X. Chen, W. Qiu, J. Pu, Impact of nonlinear Kerr effect on the focusing performance of optical lens with high-intensity laser incidence. Appl. Sci. 10, 1945 (2020)

    Article  Google Scholar 

  18. S. Haddadi, O. Bouzid, M. Fromager, A. Hasnaoui, A. Harfouche, E. Cagniot, A. Forbes, K. Ait-Ameur, Structured Laguerre–Gaussian beams for mitigation of spherical aberration in tightly focused regimes. J. Opt. 20, 045602 (2018)

    Article  ADS  Google Scholar 

  19. J. Pu, H. Zhang, Intensity distribution of Gaussian beams focused by a lens with spherical aberration. Opt. Commun. 151, 331–338 (1998)

    Article  ADS  Google Scholar 

  20. C.Y. Liao, M. Bouriaund, P.L. Baldeck, J.C. Léon, C. Masclet, Two-dimensional slicing method to speed up the fabrication of micro-objects based on two-photon polymerization. Appl. Phys. Lett. 91, 033108 (2007)

    Article  ADS  Google Scholar 

  21. K.S. Lee, R.H. Kim, D.Y. Yang, S.H. Park, Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog. Polym. Sci. 33, 631 (2008)

    Article  Google Scholar 

  22. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73 (1990)

    Article  ADS  Google Scholar 

  23. J.A. Glaze, High energy glass lasers. Opt. Eng. 15, 136 (1976)

    Article  ADS  Google Scholar 

  24. J.A. Hermann, Simple model for a passive optical power limiter. Opt. Acta 32, 541 (1985)

    Article  ADS  Google Scholar 

  25. A.A. Ishaaya, N. Davidson, G. Machavariani, E. Hasman, A.A. Friesem, Efficient selection of high-order Laguerre–Gaussian modes in a Q-switched Nd:YAG Laser. IEEE J. Quantum Electron 39, 74 (2003)

    Article  ADS  Google Scholar 

  26. G. Machavariani, Effects of phase errors on high order mode selection with intracavity phase element. Appl. Opt. 43, 6328 (2004)

    Article  ADS  Google Scholar 

  27. E. Cagniot, M. Fromager, T. Godin, N. Passilly, M. Brunel, K. Aït-Ameur, A variant of the method of Fox and Li dedicated to intracavity laser beam shaping. JOSA A 28, 489 (2011)

    Article  ADS  Google Scholar 

  28. W.W. Rigrod, Isolation of axi-symmetrical optical-resonator modes. Appl. Phys. Lett. 2, 51 (1963)

    Article  ADS  Google Scholar 

  29. K.M. Abramski, H.J. Baker, A.D. Colley, R.R. Hall, Single-mode selection using coherent imaging within a slab waveguide CO2 laser. Appl. Phys. Lett. 60, 2469 (1992)

    Article  ADS  Google Scholar 

  30. A. Hasnaoui, K. Aït-Ameur, Properties of a laser cavity containing an absorbing ring. Appl. Opt. 49, 4034 (2010)

    Article  ADS  Google Scholar 

  31. M. Ciofini, A. Labate, A. Meucci, P.Y. Wang, Experimental evidence of selection and stabilization of spatial patterns in a CO2 laser by means of spatial perturbations. Opt. Commun. 154, 307 (1998)

    Article  ADS  Google Scholar 

  32. S. Ngcobo, K. Aït-Ameur, N. Passilly, A. Hasnaoui, A. Forbes, Exciting higher-order radial Laguerre–Gaussian modes in a diode-pumped solid state laser resonator. Appl. Opt. 52, 2093 (2013)

    Article  ADS  Google Scholar 

  33. A. Bencheikh, M. Fromager, K. Aït-Ameur, Generation of Laguerre–Gaussian LGp0 beams using binary phase diffractive optical elements. Appl. Opt. 53, 4761 (2014)

    Article  ADS  Google Scholar 

  34. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, 7th edn. (Elsevier, New York, 2007), p. 337

    MATH  Google Scholar 

  35. A. Forbes, Chap. 7. Laser Beam Propagation (CRC Press Taylor & Francis Group, 2014).

    Book  Google Scholar 

  36. S. Scholes, H. Sroor, K. Aït-Ameur, Q. Zhan, A. Forbes, General design principle for structured light lasers. Opt. Express 28, 35006 (2020)

    Article  ADS  Google Scholar 

  37. L.A. Romero, F.M. Dickey, Lossless laser beam shaping JOSA A 13, 751 (1996).

  38. S. Scholes, V. Rodriguez-Fajardo, A. Forbes, Lossless reshaping of structured light. arXiv:2004.10196v2 [Physics Optics] (2020)

  39. V.N. Mahajan, Optical Imaging and Aberrations, Part I (SPIE Optical Engineering Press, Bellingham, 1998).

    Book  Google Scholar 

  40. V.N. Mahajan, Zernike circle polynomial and optical aberrations of system with circular pupils. Appl. Opt. 33, 8121 (1994)

    Article  ADS  Google Scholar 

  41. V.N. Mahajan, Zernike-Gauss polynomials and optical aberrations of systems with Gaussian pupils. Appl. Opt. 34, 8057 (1995)

    Article  ADS  Google Scholar 

  42. S. Legmizi, A. Hasnaoui, B. Boubaha, A. Aissani, K. Ait-Ameur, On the different ways for defining the effective focal length of a Kerr lens effect. Laser Phys. 27, 106201 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ait-Ameur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Kerr lens modelling for LG00 and LG10 beams

In the next, we will present a modelling of the Kerr lensing effect induced by LG00 and LG10 based on the Zernike polynomial decomposition. The propagating term of the collimated incident beam emerging from the Kerr medium is written \(\exp \left[ {ikW(\rho )} \right]\), where \(kW(\rho ) = - \Delta \varphi (\rho )\). The phase distribution \(W(\rho )\) is usually called as wave aberration function (WAF) according to the terminology of optical aberration modelling [39]. The WAF is expanded as a linear combination of Zernike polynomials (ZP), \(Z_{j}\), as follows

$$W(\overline{\rho }) = \sum\limits_{j = 1}^{\infty } {a_{j} Z_{j} (} \overline{\rho })$$
(17)

where the index j is a polynomial-ordering number, and \(a_{j}\) the aberration coefficients. The normalised radial coordinate \(\overline{\rho }\) is equal to \(\rho /R\), where R is the radius of the unit circle. In the following we set R equal to 1.5 W (2.5 W) since the circle of radius 1.5 W (2.5 W) contains 99% of the incident LG00 (LG10) beam power. The Zernike polynomials \(Z_{j} (\overline{\rho },\theta )\) are a set of orthogonal functions over the unit circle (\(0 \le \overline{\rho } \le 1\)). Table 2 gives the corresponding ZP’s [40].

Table 2 Zernike polynomials allowing to calculate the four-first non-zero aberration coefficients \(a_{1}\), \(a_{4}\), \(a_{11}\) and \(a_{22}\)

For the calculation of the aberration coefficient \(a_{j}\).we will take into account the amplitude profile \(E(\rho )\) of the incident beam [41]:

$$a_{j} = \frac{{ - \int\limits_{0}^{1} {E(\overline{\rho })\Delta \varphi (\overline{\rho })Z_{j} (\overline{\rho })\overline{\rho }d\overline{\rho }} }}{{k\int\limits_{0}^{1} {E(\overline{\rho })\overline{\rho }d\overline{\rho }} }}$$
(18)

where \(E(\overline{\rho })\) stands for \(E_{1} (\overline{\rho })\), when the incident beam is a LG00 and \(E_{2} (\overline{\rho })\) for a LG10:

$$E_{1} (\overline{\rho }) = E_{0} \times \exp \left[ { - 2.25\overline{\rho }^{2} } \right] \times \exp [ - t/\tau ],$$
(19)
$$E_{2} (\overline{\rho }) = E_{0} \times \left[ {1 - 9.68\overline{\rho }^{2} } \right]\exp \left[ { - 4.84\overline{\rho }^{2} } \right] \times \exp [ - t/\tau ].$$
(20)

The nonlinear phase shift \(\Delta \varphi (\overline{\rho })\) stands for \(\Delta \varphi_{1}\) and \(\Delta \varphi_{2}\), given by Eqs. (8) and (9), and by taking into account the normalisation of the radial coordinate rewrite as

$$\Delta \varphi_{1} (\overline{\rho }) = \varphi_{0} \times \exp [ - 4.5\overline{\rho }^{2} ],$$
(21)
$$\Delta \varphi_{2} (\overline{\rho }) = \varphi_{0} \times [1 - 12.5\overline{\rho }^{2} ]^{2} \times \exp [ - 12.5\overline{\rho }^{2} ].$$
(22)

The sum in Eq. (17) is infinite, but is usually truncated. Here, we will work arbitrarily until j = 22, and because of the rotational symmetry of \(\Delta \varphi\) most of coefficients \(a_{j}\) are equal to zero except four of them: a1, a4, a11 and a22.

In the following, we will use the dimensionless aberration coefficients Aj which are expressed in unit of wavelength, and is defined as \(A_{j} = a_{j} /\lambda\). By taking into account the expressions of \(E(\overline{\rho })\) and \(\Delta \varphi (\overline{\rho })\) we get finally.

For LG00:

$$A_{j} = \frac{{ - \varphi_{0} \int\limits_{0}^{1} {\overline{\rho }\exp [ - 6.75\overline{\rho }^{2} ]} Z_{j} (\overline{\rho })d\overline{\rho }}}{{2\pi \int\limits_{0}^{1} {\overline{\rho }\exp [ - 2.25\overline{\rho }^{2} ]} d\overline{\rho }}}.$$
(23)

For LG10:

$$A_{j}^{\prime } = \frac{{ - \varphi_{0} \int\limits_{0}^{1} {\overline{\rho }[1 - 12.5\overline{\rho }^{2} ]^{3} \exp [ - 18.75\overline{\rho }^{2} ]} Z_{j} (\overline{\rho })d\overline{\rho }}}{{2\pi \int\limits_{0}^{1} {\overline{\rho }[1 - 12.5\overline{\rho }^{2} ]\exp [ - 6.25\overline{\rho }^{2} ]} d\overline{\rho }}}.$$
(24)

The integrals in Eq. (23) and (24) are solved numerically using a FORTRAN routine based on the numerical integrator dqdag from the International Mathematics and Statistical Library (IMSL). The results are given in Table 3:

Table 3 Dimensionless aberrations coefficients \(A_{1}\),\(A_{4}\),\(A_{11}\) and \(A_{22}\) normalised by the nonlinear axis phase shift \(\varphi_{0}\) associated with the Kerr phase aberration \(\Delta \varphi_{1} (\rho )\) or \(\Delta \varphi_{2} (\rho )\), when the input is a LG00 or a LG10 beam, respectively

It has been already shown [42] that it is possible to deduce an equivalent focal length \(\sqrt 3 R^{2} /(12\lambda A_{4} )\), noted \(f_{K0}\), for LG00 input, and \(f_{K1}\), for LG10 input, from the aberration coefficients \(A_{4}\) and \(A_{4}^{^{\prime}}\):

For LG00:

$$f_{K0} = \frac{{4.48W^{2} }}{{\lambda \varphi_{0} }} \times \exp [2(t/\tau )^{2} ],$$
(25)

For LG10:

$$f_{K1} = \frac{{ - 84W^{2} }}{{\lambda \varphi_{0} }} \times \exp [2(t/\tau )^{2} ].$$
(26)

The first remark that could be made from the above is that the Kerr lensing effect induced by a LG00 (LG10) is a converging (diverging) lensing effect which has a tendency to shift the best focus point toward (away) the lens. In addition, Eqs. (25) and (26) show that \(\left| {f_{K1} } \right| > > \left| {f_{K0} } \right|\) and that explains the focal shift behaviour illustrated in Fig. 3.

The position \(z_{F0}\) (\(z_{F1}\)) of the best focus when the input is a LG00 (LG10) beam in the framework of the above Kerr lens modelling is given by

$$\frac{1}{{z_{F0} }} = \frac{1}{{f_{L} }} + \frac{1}{{f_{K0} }}\,{\text{and}}\,\frac{1}{{z_{F1} }} = \frac{1}{{f_{L} }} + \frac{1}{{f_{K1} }}.$$
(27)

The results are shown in Fig. 17, for t = 0, which displays the best focus position \(z_{F0}\) and \(z_{F1}\), resulting from the above Kerr lens modelling for LG00 and LG10 input, and position \(z_{\max }\) calculated from the on-axis intensity distribution. The agreement between the Kerr lens modelling (\(z_{F0}\) and \(z_{F1}\)) and the position \(z_{\max }\) of the best focus is not perfect but satisfactory at the very least concerning the trend in focus shift due to optical Kerrr effect (Fig. 22).

Fig. 22
figure 22

Comparison of the best focus position obtained (i) by solving the diffraction integral (\(z_{\max }\)) and (ii) by the Kerr lens modelling based on the aberration coefficients characterising the Kerr phase profile induced by LG00 and LG10 beams (\(z_{F0}\) and \(z_{F1}\))

Validity of Fresnel–Kirchhoff integral for ultrashort pulses

The well-known Fresnel–Kirchhoff integral given by Eq. (5) assumes that the incident wave is monochromatic, and this is rigorously not the case when the incident beam is an ultrashort pulse. The time variation of the electric field associated with the laser pulse takes the following form

$$E(t) = \exp \left[ { - t^{2} /\tau^{2} } \right] \times \exp (i\omega_{0} t).$$
(28)

The spectral content \(E(\omega )\) is deduced from the following Fourier transform

$$E(\omega ) = \tau \sqrt \pi \times \exp \left[ { - \pi^{2} \tau^{2} (\omega - \omega_{0} )^{2} } \right].$$
(29)

The spectral width (at half-maximum) is equal to \(\Delta \omega = \sqrt {\ln 2} /(\pi \tau )\). If one considers a central wavelength \(\lambda_{0} = 1064nm\) we obtain the width \(\Delta \lambda\) of the spectral distribution

$$\frac{\Delta \lambda }{{\lambda_{0} }} = \frac{{0.149 \times 10^{ - 15} }}{\tau }.$$
(30)

If one takes into account Eq. (4), we can estimate the variation \(\Delta \varphi_{0}\) of the nonlinear on-axis phase shift which is the key parameter of the diffracted field distribution:

$$\frac{{\Delta \varphi_{0} }}{{\varphi_{0} }} = \frac{\Delta \lambda }{{\lambda_{0} }} = \frac{{0.149 \times 10^{ - 15} }}{\tau }.$$
(31)

The following table (Table 4) shows that for a pulse duration \(\tau > 100fs\), the resulting variation of the nonlinear on-axis phase shift is too small for having a significant influence on the diffracted field. As a result, in these conditions we can use the classical Fresnel–Kirchhoff integral for calculating the pattern in plane \(z = f_{L}\).

Table 4 Relative variations of the nonlinear phase shift due to the spectral content of the pulse of duration \(\tau\)

In the case where the pulse duration \(\tau\) is too short, the application of Eq. (4) is not valid and the calculation of the diffracted field should need to take into account the finite spectrum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasnaoui, A., Fromager, M., Cagniot, E. et al. Structuring a laser beam subject to optical Kerr effect for improving its focusing properties. Appl. Phys. B 127, 75 (2021). https://doi.org/10.1007/s00340-021-07602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07602-z

Navigation