Skip to main content

Advertisement

Log in

Reliable glucose sensing properties of electrodeposited vertically aligned manganese oxide thin film electrode

  • Rapid communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, vertically aligned nanosheets of manganese oxide (MnO2) were deposited on stainless steel (SS) substrate via binder free anodic electrodeposition method. The MnO2 films were characterized with X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy to study the crystal structure, elemental composition, morphology and chemical state. Further, the films were explored as an electrode for electrochemical detection of glucose by cyclic voltammetry and it amperometric techniques using three electrode system. The sensitivity of 4341 µA mM−1 cm−2 at working potential of 0.5 V/SCE was shown by MnO2 electrode with wide linear range of 50 µM–1.2 mM having lower detection limit of 0.53 µM. This result points that the vertically aligned nanosheets of MnO2 thin film can be a promising candidate for enzymeless glucose sensing.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

References

  1. H. Cao, A. Yang, H. Lia, L. Wang, S. Lib, J. Konga, X. Bao, R. Yang, Sens. Actu. B (2015). https://doi.org/10.1016/j.snb.2015.03.026

    Article  Google Scholar 

  2. S. Maghsoudi, A. Mohammadi, Synth. Met (2020). https://doi.org/10.1016/j.synthmet.2020.116543

    Article  Google Scholar 

  3. H. Liu, X. Wu, B. Yang, Z. Li, L. Lei, X. Zhang, Electrochem. Acta. (2015). https://doi.org/10.1016/j.electacta.2015.06.062

    Article  Google Scholar 

  4. S. Ji, Z. Yang, C. Zhang, Y.E. Miao, W.W. Tjiu, J. Pan, T. Liu, Microchim. Acta (2013). https://doi.org/10.1007/s00604-013-1035-2

    Article  Google Scholar 

  5. C. Guo, H. Li, X. Zhang, H. Huo, C. Xu, Sens. Actu. B. (2015). https://doi.org/10.1016/j.snb.2014.09.058

    Article  Google Scholar 

  6. X. Weina, L. Guanlin, W. Chuanshen, C. Hu, X. Wang, Electrochem. Acta (2017). https://doi.org/10.1016/j.electacta.2016.12.130

    Article  Google Scholar 

  7. C. Guo, H. Li, X. Zhang, H. Huo, C. Xu, Sens. Actu. B. 206, 407–414 (2015). https://doi.org/10.1016/j.snb.2014.09.058

    Article  Google Scholar 

  8. J. Chen, W.-D. Zhang, J.-S. Ye, Electrochem. commun 10, 1268–1271 (2008). https://doi.org/10.1016/j.elecom.2008.06.022

    Article  Google Scholar 

  9. D.B. Malavekar, V.C. Lokhande, V.J. Mane, S.B. Ubale, U.M. Patil, C.D. Lokhande, J. Phys. Chem. Solids 141, 109425 (2020). https://doi.org/10.1016/j.jpcs.2020.109425

    Article  Google Scholar 

  10. T. Nguyen, M. Carmezim, M. Boudard, M.F. Montemor, Int. J. Hydrog. Energy (2015). https://doi.org/10.1016/j.ijhydene.2015.10.041

    Article  Google Scholar 

  11. D.B. Malavekar, S.B. Kale, V.C. Lokhande, U.M. Patil, J.H. Kim, C.D. Lokhande, J. Phys. Chem. C (2020). https://doi.org/10.1021/acs.jpcc.0c08454

    Article  Google Scholar 

  12. B. Yang, J. Wang, D. Bin, M. Zhu, P. Yang, Y. Du, J. Mater. Chem. B (2015). https://doi.org/10.1039/C5TB01031D

    Article  Google Scholar 

  13. C. Rogiera, G. Pognona, P. Bondavalli, C. Galindo, G.T.M. Nguyen, C. Vancaeyzeele, P.-H. Aubert, Surf. Coat Technol. (2020). https://doi.org/10.1016/j.surfcoat.2019.125310

    Article  Google Scholar 

  14. S. Premlatha, P. Sivasakthi, G.N.K.R. Bapu, RSC Adv. (2015). https://doi.org/10.1039/C5RA12316J

    Article  Google Scholar 

  15. Y. Wang, W. Bai, F. Nie, J. Zheng, Electroanalysis (2015). https://doi.org/10.1002/elan.201500049

    Article  Google Scholar 

  16. Z. Meng, Q. Sheng, J. Zheng, J. Iran Chem. Soc. (2012). https://doi.org/10.1007/s13738-012-0119-y

    Article  Google Scholar 

  17. Y. Liu, X. Zhang, D. He, F. Maa, Q. Fua, Y. Hu, RSC Adv. (2016). https://doi.org/10.1039/C6RA02680J

    Article  Google Scholar 

  18. J. Chen, W.-D. Zhang, J.-S. Ye, Electrochem. Commun. (2008). https://doi.org/10.1016/j.elecom.2008.06.022

    Article  Google Scholar 

  19. E. Vilian, V. Mani, S.-M. Chen, B. Dinesh, S.-T. Huang, Ind. Eng. Chem. Res. (2014). https://doi.org/10.1021/ie502430d

    Article  Google Scholar 

  20. X. Xiao, X. Zhang, Z. Zhang, J. You, S. Liu, Y. Wang, Microchim. Acta. (2020). https://doi.org/10.1007/s00604-019-4063-8

    Article  Google Scholar 

  21. A.A. Ibrahim, E.M. Sodki, A. Umar, A. Amine, R. Kumar, M.S. AlAssiri, A.E. AlSalami, S. Baskoutas, New J. Chem. (2017). https://doi.org/10.1039/C7NJ03253F

    Article  Google Scholar 

  22. S.-H. Liao, S.-Y. Lu, S.-J. Bao, Y.-N. Yu, M.-Q. Wang, Anal. Chim. Acta. (2016). https://doi.org/10.1016/j.aca.2015.12.017

    Article  Google Scholar 

  23. R.K. Sahoo, A. Das, K. Samantaray, S.K. Singh, R.S. Mane, H.-C. Shin, J.M. Yuna, K.H. Kim, Cryst Eng Comm (2019). https://doi.org/10.1039/C8CE02033G

    Article  Google Scholar 

  24. X. Gou, S. Sun, Q. Yang, P. Li, S. Liang, X. Zhang, Z. Yang, New J. Chem. (2018). https://doi.org/10.1039/C7NJ04717G

    Article  Google Scholar 

  25. Y.Q. Wang, Z.Y. Ji, X.P. Shen, G. Zhu, J. Wang, X.Y. Yue, New J. Chem. (2017). https://doi.org/10.1039/C7NJ01952A

    Article  Google Scholar 

  26. M. Harry, M. Chowdhury, F. Cummings, C.J. Arendse, Sens. Bio Sens. Res. (2019). https://doi.org/10.1016/j.sbsr.2019.100262

    Article  Google Scholar 

  27. M.H. Yang, J.-M. Jeong, K.G. Lee, D.H. Kim, S.J. Lee, B.G. Choi, Biosens. Bioelectron. (2016). https://doi.org/10.1016/j.bios.2016.01.075

    Article  Google Scholar 

  28. M. Kang, H. Zhou, N. Zhao, B. Lv, Cryst Eng Comm (2020). https://doi.org/10.1039/c9ce01396b

    Article  Google Scholar 

  29. T. Dayakar, K.V. Rao, K. Bikshalu, V. Rajendar, S.-H. Park, Mater. Sci. Eng. C (2017). https://doi.org/10.1016/j.msec.2017.02.032

    Article  Google Scholar 

  30. M. Wang, J. Ma, Q. Chang, X. Fan, G. Zhang, F. Zhang, W. Peng, Y. Li, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.12.136

    Article  Google Scholar 

Download references

Acknowledgement

Authors are thankful to D. Y. Patil Education Society, Kolhapur-416006 (India), for financial support through research project sanction No. DYPES/DU/R&D/3099. In addition, Mr. S. B. Jadhav acknowledges the Chhatrapati Shahu Maharaj Research Training and Human Development (SARTHI), Government of Maharashtra, India for awarding Junior Research Fellowship (JRF). Authors are also thankful to DST-FIST analytical Instrumental laboratory Jaysingpur college, Jaysingpur for experimental and characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Pawaskar.

Ethics declarations

Conflict of interest

Authors declare there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, S.B., Malavekar, D.B., Kale, S.B. et al. Reliable glucose sensing properties of electrodeposited vertically aligned manganese oxide thin film electrode. Appl. Phys. A 127, 391 (2021). https://doi.org/10.1007/s00339-021-04544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04544-3

Keywords

Navigation