Skip to main content
Log in

Growth, seed yield and nutritional characteristics of pigeonpea grown under elevated CO2 atmosphere

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In the present study, we have analyzed the seed yield and seed quality of pigeonpea grown under elevated CO2. Pigeonpea was grown for its complete life cycle in open top chambers under elevated CO2 (600 µmol/mol) and atmospheric ambient CO2 (400 µmol/mol). The growth, biomass and seed yield were increased under elevated CO2 when compared to plants grown at ambient CO2 concentrations. The mature seeds were collected after 120 days for various biochemical analyses to determine their nutritional quality. The biochemical analyses indicated that elevated CO2 grown pigeonpea seeds did not show any significant decrease in nitrogen and protein contents but showed an increase in total carbohydrates. The metabolomics of seeds revealed changes in sugars, amino acids, organic acids and fatty acid levels under elevated CO2 growth. The seeds collected from elevated CO2 grown pigeonpea showed higher levels of essential amino acids inferring their better nutritional quality. The total proteome of pigeonpea seed was studied through label-free quantification and recorded an increase in several seed specific proteins including certain stress related proteins in elevated CO2 grown pigeonpea seeds. The proteome and metabolome data demonstrate better seed vigor in elevated CO2 grown pigeonpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Amir R, Galili G, Cohen H (2018) The metabolic roles of free amino acids during seed development. Plant Sci 275:11–18

    Article  CAS  PubMed  Google Scholar 

  • Angelovici R, Galili G, Fernie AR, Fait A (2010) Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15(4):211–218

    Article  CAS  PubMed  Google Scholar 

  • Angelovici R, Fait A, Fernie AR, Galili G (2011) A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination. New Phytol 189:148–159

    Article  CAS  PubMed  Google Scholar 

  • Bourgault M, Brand J, Tausz M, Fitzgerald GJ (2016) Yield, growth and grain nitrogen response to elevated CO2 of five field pea (Pisum sativum L.) cultivars in a low rainfall environment. Field Crops Res 196:1–9

    Article  Google Scholar 

  • Bourgault M, Brand J, Tausz-Posch S, Armstrong RD, O’Leary GL et al (2017) Yield, growth and grain nitrogen response to elevated CO2 in six lentil (Lens culinaris) cultivars grown under free air CO2 enrichment (FACE) in a semiarid environment. Eur J Agron 87:50–58

    Article  CAS  Google Scholar 

  • Bunce JA (2016) Responses of soybeans and wheat to elevated CO2 in free-air and open top chamber systems. Field Crops Res 186:78–85

    Article  Google Scholar 

  • Burkey OK, Booker FL, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: II. Seed yield and quality. Crop Sci 47(4):1488–1497

    Article  CAS  Google Scholar 

  • Coleman JS, McConnaughay KDM, Bazzaz FA (1993) Elevated CO2 and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? Oecologia 93:195–200

    Article  CAS  PubMed  Google Scholar 

  • Dam S, Laursen BS, Ornfelt JH, Jochimsen B, Staerfelt HH, Friis C, Nielsen K et al (2009) The proteome of seed development in the model legume Lotus japonicas. Plant Physiol 149:1325–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fait A, Angelovici R, Less H, Ohad I, Wochnak EW et al (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galili G, Amir R (2013) Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol J 11:211–222

    Article  CAS  PubMed  Google Scholar 

  • Galili G, Amir R, Fernie AR (2016) The regulation of essential amino acid synthesis and accumulation in plants. Annu Rev Plant Biol 67:153–178

    Article  CAS  PubMed  Google Scholar 

  • Giannoccaro E, Wang YJ, Chen P (2006) Effects of solvent, temperature, time, solvent to sample ratio, sample size, and defatting on the extraction of soluble sugars in soybean. J Food Sci 71:59–64

    Article  Google Scholar 

  • Hampton JG, Boelt B, Rolston MP, Chastain TG (2012) Effects of elevated CO2 and temperature on seed quality. J Agric Sci 151:154–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) Methods in carbohydrate chemistry, vol. 17, ed. by Whistler RL and BeMiller JN. Academic Press, New York, p 420

    Google Scholar 

  • Hikosaka K, Kinugasa T, Oikawa S, Onoda Y, Hirose T (2011) Effects of elevated CO2 concentration on seed production in C3 annual plants. J Exp Bot 62(4):1523–1530

    Article  CAS  PubMed  Google Scholar 

  • Hogy P, Fangmeier A (2008) Effects of elevated atmospheric CO2 on grain quality of wheat. J Cereal Sci 48(3):580–591

    Article  CAS  Google Scholar 

  • Hogy P, Zorb C, Langenkamper G, Betsche T, Fangmeier A (2009) Atmospheric CO2 enrichment changes the wheat grain proteome. J Cereal Sci 50(2):248–254

    Article  CAS  Google Scholar 

  • Jaouni SA, Saleh AM, Wadaan MAM, Hozzein WN, Selim S, Abdelgawad H (2018) Elevated CO2 induces a global metabolic change in basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) and improves their biological activity. J Plant Physiol 224–225:121–131

    Article  PubMed  CAS  Google Scholar 

  • Kopka J, Schauer N et al (2005) GMD@ CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Krishnan HB, Natarajan SS, Oehrle NW, Garrett NW, Darwish O (2017) Proteomic analysis of pigeonpea (Cajanus cajan) seeds reveals the accumulation of numerous stress-related proteins. J Agric Food Chemi 65:4572–4581

    Article  CAS  Google Scholar 

  • Kumar S, Sreeharsha RV, Mudalkar S, Sarashetti PM, Reddy AR (2017) Molecular insights into photosynthesis and carbohydrate metabolism in Jatropha curcas grown under elevated CO2 using transcriptome sequencing and assembly. Sci Rep 7:11066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maphosa Y, Jideani VA (2017) The role of legumes in human nutrition, functional food—improve health through adequate food. Hueda MC (ed) BoD–Books on Demand, IntechOpen. https://doi.org/10.5772/intechopen.69127

  • Mattioli R, Costantino P, Trovato M (2009) Proline accumulation in plants. Plant Signal Behav 4(11):1016–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGill W, Figueiredo C (1993) Total nitrogen, soil sampling and methods of analysis. Lewis Publ, Boca Raton, pp 201–211

    Google Scholar 

  • Miller JL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Ndakidemi PA, Dakora FD (2003) Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Funct Plant Biol 30:729–745

    Article  PubMed  Google Scholar 

  • Pandey V, Sharma M, Deeba F et al (2017) Impact of elevated CO2 on wheat growth and yield under free air CO2 enrichment. Am J Clim Change 6(4):573–596

    Article  Google Scholar 

  • Piikki K, De Temmerman L, Ojanpera K, Danielsson H, Pleijel H (2008) The grain quality of spring wheat (Triticum aestivum L.) in relation to elevated ozone uptake and carbon dioxide exposure. Eur J Agron 28(3):245–254

    Article  CAS  Google Scholar 

  • Raisanen T, Ryyppo A, Julkunen-Tiitto R, Kellomaki S (2008) Effects of elevated CO2 and temperature on secondary compounds in the needles of Scots pine (Pinus sylvestris L.). Trees 22:121–135

    Article  CAS  Google Scholar 

  • Saha S, Sehgal VK, Nagarajan S, Pal M (2012) Impact of elevated atmospheric CO2 on radiation utilization and related plant biophysical properties in pigeon pea (Cajanus cajan L.). Agric Forest Meteorol 158:63–70

    Article  Google Scholar 

  • Sanz-Saez A, Perez-Lopez U, del Canto A, Ortiz-Barredo A et al (2019) Changes in environmental CO2 concentration can modify Rhizobium-soybean specificity and condition plant fitness and productivity. Environ Exp Bot 162:133–143

    Article  CAS  Google Scholar 

  • Sekhar KM, Sreeharsha RV, Reddy AR (2015) Differential responses in photosynthesis, growth and biomass yields in two mulberry genotypes grown under elevated CO2 atmosphere. J Photochem Photobiol B: Biol 151:172–179

    Article  CAS  Google Scholar 

  • Singha KT, Sreeharsha RK, Mariboina S, Reddy AR (2019) Dynamics of metabolites and key regulatory proteins in the developing seeds of Pongamia pinnata, a potential biofuel tree species. Ind Crops Prod 140:111621

    Article  CAS  Google Scholar 

  • Soba D, Mariem SB, Mendizabal TF, Mendez-Espinoza AM, Gulard F, Gonzalez-Murua C et al (2019) Metabolic effects of elevated CO2 on wheat grain development and composition. J Agric Food Chemi 67(31):8441–8451

    Article  CAS  Google Scholar 

  • Sreeharsha RV, Sekhar KM, Reddy AR (2015) Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO2. Plant Sci 231:82–93

    Article  CAS  PubMed  Google Scholar 

  • Sreeharsha RV, Mudalkar S, Sengupta D, Unnikrishnan DK, Reddy AR (2019) Mitigation of drought-induced oxidative damage by enhanced carbon assimilation and an efficient antioxidative metabolism under high CO2 environment in pigeonpea (Cajanus cajan L.). Photosyn Res 139(1–3):425–439

    Article  CAS  Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Change Biol 14:565–575

    Article  Google Scholar 

  • Vadivel V, Janardhanan K (2000) Chemical composition of the underutilized legume Cassia hirsuta L. Plant Foods Hum Nutr 55:369–381

    Article  CAS  PubMed  Google Scholar 

  • Wang WQ, Liu SH, Song SQ, Moller IM (2015) Proteomics of seed development, desiccation tolerance, germination and vigor. Plant Physiol Biochem 86:1–15

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Patrick JW, Ruan YL (2017) Live long and prosper: roles of sugar and sugar polymers in seed vigor. Mol Plant 11:1–3

    Article  PubMed  CAS  Google Scholar 

  • Waterworth WM, Bray CM, West CE (2019) Seeds and the art of genome maintenance. Front Plant Sci 10:706

    Article  PubMed  PubMed Central  Google Scholar 

  • Wink M (2013) Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot 2013:164–175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant (BT/PR-12024/BCE/08/1097/2014) from DBT, Government of India to Attipalli R. Reddy. We are thankful to ICRISAT, Patancheru for providing us the pigeonpea seed variety. We thank the Metabolomics Facility of School of Life Sciences, University of Hyderabad for GC–MS analysis, and Sandors Life Sciences Pvt Ltd for the Label free quantification analysis. DKU is thankful to University of Hyderabad for the fellowship. RVS acknowledges DST-INSPIRE Faculty Grant (DST/INSPIRE/04/2018/000214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attipalli R. Reddy.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Communicated by S. Esposito.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unnikrishnan, D.K., Sreeharsha, R.V. & Reddy, A.R. Growth, seed yield and nutritional characteristics of pigeonpea grown under elevated CO2 atmosphere. Acta Physiol Plant 43, 80 (2021). https://doi.org/10.1007/s11738-021-03245-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03245-x

Keywords

Navigation