Skip to main content
Log in

Acetylcholinesterase target sites for developing environmentally friendly insecticides against Tetranychus urticae (Acari: Tetranychidae)

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The non-target toxicity and resistance problems of acetylcholinesterase (AChE) insecticides, such as organophosphates and carbamates, are of growing concern. To explore the potential targets for achieving inhibitor selectivity, the AChE structures at or near the catalytic pocket of Tetranychus urticae (TuAChE), honey bees, and humans were compared. The entrances to the AChE catalytic pocket differ significantly because of their different peripheral sites. The role of these potential mite-specific sites in AChE function was further elucidated by site-directed mutagenesis of these sites and then examining the catalytic activities of TuAChE mutants. The spider mite E316, H369, and V105 active sites are important for AChE function. By further analyzing their physostigmine inhibitory properties and the detailed interaction between physostigmine and TuAChE, the peripheral site H369 locating near the gorge entrance, and S154 at the oxyanion hole, affects substrate and inhibitor trafficking. The discovery of conserved mite-specific residues in Tetranychus will enable the development of safer, effective pesticides that target residues present only in mite AChEs, potentially offering effective control against this important agricultural pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anazawa Y, Tomita T, Aiki Y, Kozaki T, Kono Y (2003) Sequence of a CDNA encoding acetylcholinesterase from susceptible and resistant two-spotted spider mite, Tetranychus urticae. Insect Biochem Mol Biol 33:509–514. https://doi.org/10.1016/S0965-1748(03)00025-0

    Article  CAS  PubMed  Google Scholar 

  • Barak D, Ordentlich A, Stein D, Yu Q, Greig NH, Shafferman A (2008) Accommodation of physostigmine and its analogues by acetylcholinesterase is dominated by hydrophobic interactions. Biochemical Journal 417:213–222. https://doi.org/10.1042/BJ20081276

    Article  CAS  Google Scholar 

  • Bu C-Y, Feng X-J, Wang X-Q, Cao Y, Wang Y-N, Chen Q, Gao P, Peng B, Li J-L, Han J-Y, Shi G-L (2015a) Cloning and characterization of the acetylcholinesterase1 gene of Tetranychus cinnabarinus (Acari: Tetranychidae). J Econ Entomol 108:769–779. https://doi.org/10.1093/jee/tou046

    Article  CAS  PubMed  Google Scholar 

  • Bu C, Peng B, Cao Y, Wang X, Chen Q, Li J, Shi G (2015b) Novel and selective acetylcholinesterase inhibitors for Tetranychus cinnabarinus (Acari: Tetranychidae). Insect Biochem Mol Biol 66:129–135. https://doi.org/10.1016/j.ibmb.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Li L (2014) Improved protein–ligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinformatics 30(12):1674–1680

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Song L, Miao Z, Hu Y, Tian L, Jiang T (2010) Improved side-chain modeling by coupling clash-detection guided iterative search with rotamer relaxation. Bioinformatics 27:785–790. https://doi.org/10.1093/bioinformatics/btr009

    Article  CAS  Google Scholar 

  • Carlier PR, Anderson TD, Wong DM, Hsu DC, Hartsel J, Ma M, Wong EA, Choudhury R, Lam PC-H, Totrov MM (2008) Towards a species-selective acetylcholinesterase inhibitor to control the mosquito vector of malaria, Anopheles gambiae. Chem Biol Interact 175:368–375

    Article  CAS  PubMed  Google Scholar 

  • Cheung J, Mahmood A, Kalathur R, Liu L, Carlier PR (2018) Structure of the g119s mutant acetylcholinesterase of the malaria vector Anopheles gambiae reveals basis of insecticide resistance. Structure 26:130-136.e2. https://doi.org/10.1016/j.str.2017.11.021

    Article  CAS  PubMed  Google Scholar 

  • Dermauw W, Osborne EJ, Clark RM, Grbić M, Tirry L, Van Leeuwen T (2013) A burst of abc genes in the genome of the polyphagous spider mite Tetranychus urticae. BMC Genomics 14:317. https://doi.org/10.1186/1471-2164-14-317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou D, Park JG, Rana S, Madden BJ, Jiang H, Pang Y-P (2013) Novel selective and irreversible mosquito acetylcholinesterase inhibitors for controlling malaria and other mosquito-borne diseases. Sci Rep 3:1068–1068. https://doi.org/10.1038/srep01068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3d structure to function. Chem Biol Interact 187:10–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. https://doi.org/10.1126/science.1255957

    Article  CAS  PubMed  Google Scholar 

  • Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, Osborne EJ, Dermauw W, Thi Ngoc PC, Ortego F, Hernández-Crespo P, Diaz I, Martinez M, Navajas M, Sucena É, Magalhães S, Nagy L, Pace RM, Djuranović S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487. https://doi.org/10.1038/nature10640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harel M, Kryger G, Rosenberry TL, Mallender WD, Lewis T, Fletcher RJ, Guss JM, Silman I, Sussman JL (2000) Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci 9:1063–1072. https://doi.org/10.1110/ps.9.6.1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetnarski B, O’Brien RD (1975) Electron-donor and affinity constants and their application to the inhibition of acetylcholinesterase by carbamates. J Agric Food Chem 23:709–713. https://doi.org/10.1021/jf60200a002

    Article  CAS  PubMed  Google Scholar 

  • Ilg T, Cramer J, Lutz J, Noack S, Schmitt H, Williams H, Newton T (2011) The characterization of Lucilia cuprina acetylcholinesterase as a drug target, and the identification of novel inhibitors by high throughput screening. Insect Biochem Mol Biol 41:470–483. https://doi.org/10.1016/j.ibmb.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  • Khajehali J, Van Leeuwen T, Grispou M, Morou E, Alout H, Weill M, Tirry L, Vontas J, Tsagkarakou A (2010) Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates. Pest Manag Sci 66:220–228. https://doi.org/10.1002/ps.1884

    Article  CAS  PubMed  Google Scholar 

  • Khajehali J, Van Nieuwenhuyse P, Demaeght P, Tirry L, Van Leeuwen T (2011) Acaricide resistance and resistance mechanisms in Tetranychus urticae populations from rose greenhouses in The Netherlands. Pest Manag Sci 67:1424–1433. https://doi.org/10.1002/ps.2191

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker Benjamin A, Thiessen Paul A, Yu B (2018) Pubchem 2019 update: Improved access to chemical data. Nucleic Acids Res 47(D1):D1102–D1109

    Article  PubMed Central  Google Scholar 

  • Kwon DH, Choi JY, Je YH, Lee SH (2012) The overexpression of acetylcholinesterase compensates for the reduced catalytic activity caused by resistance-conferring mutations in Tetranychus urticae. Insect Biochem Mol Biol 42:212–219. https://doi.org/10.1016/j.ibmb.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  • Lang GJ, Yan Zhu K, Zhang C-X (2012) Can acetylcholinesterase serve as a target for developing more selective insecticides? Curr Drug Targets 13:495–501

    Article  CAS  PubMed  Google Scholar 

  • Lewis G, Thompson H, Smagghe G (2007) In focus: pesticides and honeybees—the work of the ICP-BR bee protection group. Pest Manag Sci 63:1047–1050

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Grimm M, Dai W-T, Hou M-C, Xiao Z-X, Cao Y (2020) CB-dock: a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol Sin 41:138–144. https://doi.org/10.1038/s41401-019-0228-6

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Li C, Xiu C, Zhang J, Li J, Huang L, Zhang Y, Liu Z (2016) Identification and biochemical properties of two new acetylcholinesterases in the pond wolf spider (Pardosa pseudoannulata). PLoS ONE 11:e0158011. https://doi.org/10.1371/journal.pone.0158011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migeon A, Ferragut F, Escudero-Colomar LA, Fiaboe K, Knapp M, de Moraes GJ, Ueckermann E, Navajas M (2009) Modelling the potential distribution of the invasive tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Exp Appl Acarol 48:199–212. https://doi.org/10.1007/s10493-008-9229-8

    Article  PubMed  Google Scholar 

  • Pang YP (2007) Species marker for developing novel and safe pesticides. Bioorg Med Chem Lett 17:197–199

    Article  CAS  PubMed  Google Scholar 

  • Pang YP, Singh SK, Yang G, Leon LT, Mishra RK, Yan ZK, Stephen B, Floyd R (2009) Selective and irreversible inhibitors of aphid acetylcholinesterases: steps toward human-safe insecticides. PLoS ONE 4:e4349

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang YP, Ekström F, Polsinelli GA, Gao Y, Rana S, Hua DH, Andersson B, Andersson PO, Peng L, Singh SK, Mishra RK, Zhu KY, Fallon AM, Ragsdale DW, Brimijoin S (2009) Selective and irreversible inhibitors of mosquito acetylcholinesterases for controlling malaria and other mosquito-borne diseases. PLoS ONE 4(8):e6851

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang YP, Brimijoin S, Ragsdale DW, Yan Zhu K, Suranyi R (2012) Novel and viable acetylcholinesterase target site for developing effective and environmentally safe insecticides. Curr Drug Targets 13:471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polsinelli GA, Singh SK, Mishra RK, Suranyi R, Ragsdale DW, Pang Y-P, Brimijoin S (2010) Insect-specific irreversible inhibitors of acetylcholinesterase in pests including the bed bug, the Eastern Yellowjacket, German and American cockroaches, and the confused flour beetle. Chem Biol Interact 187:142–147. https://doi.org/10.1016/j.cbi.2010.01.036

    Article  CAS  PubMed  Google Scholar 

  • Stecker T (2018) Harmful pesticide phaseout calls come as some countries’ use rises. Environment & Energy Report. Bloomberg Inductry Group

  • Trott O, Olson AJ (2010) Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite tetranychus urticae and other important acari: a review. Insect Biochem Mol Biol 40:563–572

    Article  PubMed  Google Scholar 

  • Van Leeuwen T, Yamamoto A, Nauen R, Dermauw W (2015) The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pest Biochem Physiol 121:12–21

    Article  Google Scholar 

  • Wu S, Li M, Tang P-A, Felton GW, Wang J-J (2010) Cloning and characterization of acetylcholinesterase 1 genes from insecticide-resistant field populations of Liposcelis paeta Pearman (Psocoptera: Liposcelididae). Insect Biochem Mol Biol 40:415–424. https://doi.org/10.1016/j.ibmb.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  • Xiao-Yue H, Xiao-Feng X, Jin-Jun W, Wei D, Yan-Xuan Z, Han-Jie C, Jin-Yong Z, Gui-Sheng Q, Jun-Hua H, Shao-Li W, Li-Chen Y, Hui-Min S, Rui-Hong S, Jian-Jun G, Wei-Nan W, Ming-Fang G, Jian-Ping Z, Bing-Xu C, Zi-Wei S, Lian-You G (2013) Integrated control techniques for spider mites on important crops. Chin J Appl Entomol 50:321–328

    Google Scholar 

  • Xu Z, Zhu W, Liu Y, Liu X, Chen Q, Peng M, Wang X, Shen G, He L (2014) Analysis of insecticide resistance-related genes of the carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome. PLoS ONE 9:e94779–e94779. https://doi.org/10.1371/journal.pone.0094779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2014) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3d structure prediction. BMC Bioinformatics 9:40–40. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Zhang C, Wuyun Q, Pearce R, Li Y, Zhang Y (2019) Lomets 2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins. Nucleic Acids Res 47:W429–W436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the National Natural Science Foundation of China (No. 31670648 and 81973243) and Beijing Natural Science Foundation (No. 6212004 and 6162004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunya Bu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Cao, Y., Yang, J. et al. Acetylcholinesterase target sites for developing environmentally friendly insecticides against Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 84, 419–431 (2021). https://doi.org/10.1007/s10493-021-00624-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-021-00624-4

Keywords

Navigation