Skip to main content
Log in

Comparative thermal analysis of an EG-based nanofluid containing DWCNTs

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The thermal conductivity (TC) of DWCNT/EG nanofluid at the temperature range of 30–50 °C and solid volume fraction (SVF) range of 0.055–0.92% was investigated. The results showed that the enhancement of SVF at 50 °C increases TC up to 35.37%. Experimental data obtained for this nanofluid were compared with experimental results of SWCNT/EG, DWCNT–ZnO/EG–water (40:60), MWCNT–ZnO (50:50)/EG–water (50:50) and SWCNT–ZnO (30:70)/EG–water (60:40). Using experimental data, a correlation was proposed for the prediction of TC with R2 (regression coefficient) and maximum correlation error of 0.993687% and 2%, respectively. Nanofluid sensitivity analysis showed that in higher SVFs, the increment of sensitivity relative to temperature is higher than in lower SVFs.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

K nf :

Thermal conductivity of nanofluid

K f :

Thermal conductivity of base fluid

R2 :

Regression coefficient

T:

Temperature

BET:

Brunauer–Emmett–Teller

EG:

Ethylene glycol

EXP:

Experimental

MOD:

Margin of deviation

DWCNT:

Double-walled carbon nanotube

HT:

Heat transfer

MWCNT:

Multi-walled carbon nanotube

Pred:

Predicted

SWCNT:

Single-walled carbon nanotube

SVF:

Solid volume fraction

SSA:

Specific surface area

TEM:

Transmission electron microscopy

PPF:

Price performance factor

TC:

Thermal conductivity

TCE:

Thermal conductivity enhancement

TCR:

Thermal conductivity ratio

TGA:

Thermogravimetric analysis

φ:

Solid volume fraction (%)

References

  1. M.M. Sarafraz, A. Arya, F. Hormozi, V. Nikkhah, On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: a comparative study. Appl. Therm. Eng. 112, 1373–1381 (2017)

    Article  Google Scholar 

  2. M. Sheikholeslami, H.B. Rokni, Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput. Methods. Appl. Mech. Eng. 317, 419–430 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. M.H. Esfe, H. Rostamian, M.R. Sarlak, M. Rejvani, A. Alirezaie, Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating. Phys. E Low-dimension. Syst. Nanostruct. 94, 231–240 (2017)

    Article  ADS  Google Scholar 

  4. M. H. Esfe, S. S. M. Esforjani, M. Akbari, A. Karimipour, Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle. Heat. Transf. Res. 45(6), 563–578 (2014)

    Article  Google Scholar 

  5. A.A. Nadooshan, M.H. Esfe, M. Afrand, Prediction of Rheological behavior of SiO 2-MWCNTs/10W40 hybrid nanolubricant by designing neural network. J. Therm. Anal. Calorim. 131(3), 2741–2748 (2018)

    Article  Google Scholar 

  6. M.H. Esfe, F. Zabihi, H. Rostamian, S. Esfandeh, Experimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant for lubrication purposes. J. Mol. Liq. 249, 677–687 (2018)

    Article  Google Scholar 

  7. M.H. Esfe, S. Wongwises, A. Naderi, A. Asadi, M.R. Safaei, H. Rostamian, M. Dahari, A. Karimipour, Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass Transf. 66, 100–104 (2015)

    Article  Google Scholar 

  8. M.H. Esfe, A.A.A. Arani, M. Rezaie, W.M. Yan, A. Karimipour, Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf. 66, 189–195 (2015)

    Article  Google Scholar 

  9. O. Soltani, M. Akbari, Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study. Phys. E Lowdimensional. Syst. Nanostruct. 84, 564–570 (2016)

    Article  ADS  Google Scholar 

  10. M.R. Safaei, A. Hajizadeh, M. Afrand, C. Qi, H. Yarmand, N.W.B.M. Zulkifli, Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys. A Stat. Mech. Appl. 519, 209–216 (2019)

    Article  Google Scholar 

  11. A. Alirezaie, S. Saedodin, M.H. Esfe, S.H. Rostamian, Investigation of rheological behavior of MWCNT (COOH functionalized)/MgOengine oil hybrid nanofluids and modelling the results with artificial neural networks. J. Mol. Liq. 241, 173–181 (2017)

    Article  Google Scholar 

  12. A. Shafee, M. Sheikholeslami, M. Jafaryar et al., Irreversibility of hybrid nanoparticles within a pipe fitted with turbulator. J Therm Anal Calorim 143, 715–723 (2021). https://doi.org/10.1007/s10973-019-09248-8

    Article  Google Scholar 

  13. M.H. Esfe, M.H. Hajmohammad, P. Razi, M.R.H. Ahangar, A.A.A. Arani, The optimization of viscosity and thermal conductivity in hybrid nanofluids prepared with magnetic nanocomposite of nanodiamond cobalt-oxide (ND-Co3O4) using NSGA-II and RSM. Int. Commun. Heat. Mass. Transf. 79, 128–134 (2016)

    Article  Google Scholar 

  14. M.H. Esfe, S. Esfandeh, A.A.A. Arani, Proposing a modified engine oil to reduce cold engine start damages and increase safety in high temperature operating conditions. Powder Technol. 355, 251–263 (2019)

    Article  Google Scholar 

  15. R. Mohebbi, M.M. Rashidi, M. Izadi, N.A.C. Sidik, H.W. Xian, Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int. J. Heat. Mass. Transf. 117, 1291–1303 (2018)

    Article  Google Scholar 

  16. T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation. Int. J. Heat. Mass. Transf. 102, 723–732 (2016)

    Article  Google Scholar 

  17. T. Zhang, D. Che, Double MRT thermal lattice Boltzmann simulation for MHD natural convection of nanofluids in an inclined cavity with four square heat sources. Int. J. Heat. Mass. Transf. 94, 87–100 (2016)

    Article  Google Scholar 

  18. Y. Lin, L. Zheng, X. Zhang, Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity. Int. J. Heat. Mass. Transf. 77, 708–716 (2014)

    Article  Google Scholar 

  19. D. Toghraie, V.A. Chaharsoghi, M. Afrand, Measurement of thermal conductivity of ZnO–TiO 2/EG hybrid nanofluid. J. Therm. Anal. Calorim. 125(1), 527–535 (2016)

    Article  Google Scholar 

  20. M.H. Esfe, S. Esfandeh, M. Afrand, M. Rejvani, S.H. Rostamian, Experimental evaluation, new correlation proposing and ANN modeling of thermal properties of EG based hybrid nanofluid containing ZnO-DWCNT nanoparticles for internal combustion engines applications. Appl. Therm. Eng. 133, 452–463 (2018)

    Article  Google Scholar 

  21. M. Baghbanzadeh, A. Rashidi, D. Rashtchian, R. Lotfi, A. Amrollahi, Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim. Acta. 549, 87–94 (2012)

    Article  Google Scholar 

  22. M.H. Esfe, H. Rostamian, S. Esfandeh, M. Afrand, Modeling and prediction of Rheological behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant by artificial neural network using experimental data. Physica A 510, 625–634 (2018)

    Article  ADS  Google Scholar 

  23. M. Soltanimehr, M. Afrand, Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl. Therm. Eng. 105, 716–723 (2016)

    Article  Google Scholar 

  24. M.H. Esfe, A. Ali, R. Mousa, An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management. Appl. Thermal Eng. 111, 1202–1210 (2017)

    Article  Google Scholar 

  25. M.H. Esfe, S. Esfandeh, M. Rejvani, Modeling of thermal conductivity of MWCNT-SiO2 (30: 70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J. Therm. Anal. Calorim. 131(2), 1437–1447 (2018)

    Article  Google Scholar 

  26. S.H. Rostamian et al., An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J. Molecular Liquids 231, 364–369 (2017)

    Article  Google Scholar 

  27. M.H. Esfe et al., Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int. Commun. Heat Mass Transf. 68, 248–251 (2015)

    Article  Google Scholar 

  28. N. Jha, S. Ramaprabhu, Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids. J Appl. Phys. 106(8), 084317 (2009)

    Article  ADS  Google Scholar 

  29. H. Demir et al., Numerical investigation on the single phase forced convection heat transfer characteristics of TiO 2 nanofluids in a double-tube counter flow heat exchanger. Int. Commun. Heat Mass Transfer 38(2), 218–228 (2011)

    Article  Google Scholar 

  30. Md.J. Nine et al., Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization. J. Nanosci. Nanotechnol. 12(6), 4553–4559 (2012)

    Article  Google Scholar 

  31. M.H. Esfe, S.M. Motallebi, Optimization, modeling, and prediction of relative viscosity and relative thermal conductivity of AlN nano-powders suspended in EG. Eur. Phys. J. Plus 136(1), 1–19 (2021)

    Article  Google Scholar 

  32. K.C. Lin, A. Violi, Natural convection heat transfer of nanofluids in a vertical cavity: Effects of non-uniform particle diameter and temperature on thermal conductivity, 31(2), 236–245 (2010)

  33. R. Chand, G.C. Rana, On the onset of thermal convection in rotating nanofluid layer saturating a Darcy–Brinkman porous medium. Int. J. Heat. Mass. Transf. 55(21–22), 5417–5424 (2012)

    Article  Google Scholar 

  34. M.H. Esfe, S. Saedodin, M. Biglari, H. Rostamian, Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. Int. Commun. Heat Mass Transf. 69, 29–33 (2015)

    Article  Google Scholar 

  35. S.S. Harandi, A. Karimipour, M. Afrand, M. Akbari, A. D'Orazio, An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration, 76, 171–177 (2016)

  36. S. Aberoumand, A. Jafarimoghaddam, M. Moravej, H. Aberoumand, and K. J. A. T. E. Javaherdeh, Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids, 101, 362–372 (2016)

  37. H. Ş. Aybar, M. Sharifpur, M. R. Azizian, M. Mehrabi, J. P. Meyer, A review of thermal conductivity models for nanofluids, 36(13), 1085–1110 (2015)

  38. A. Hosseinian Naeini, J. Baghbani Arani, A. Narooei, R. Aghayari, H. Maddah, Nanofluid thermal conductivity prediction model based on artificial neural network. Transp. Phenom. Nano Micro. Scales 4(2), 41–46 (2016). https://doi.org/10.7508/tpnms.2016.02.005

    Article  Google Scholar 

  39. M.H. Esfe, H. Rostamian, A. Shabani-Samghabadi, A.A.A. Arani, Application of three-level general factorial design approach for thermal conductivity of MgO/water nanofluids. Appl. Therm. Eng. 127, 1194–1199 (2017)

    Article  Google Scholar 

  40. M.H. Esfe, A.A.A. Arani, R.S. Badi, M. Rejvani, ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT–SiO 2/EG hybrid nanofluid for higher heat transfer. J. Therm. Anal. Calorim. 131(3), 2381–2393 (2018)

    Article  Google Scholar 

  41. S. Lee et al., Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer 121(2), 280–289 (1999)

    Article  Google Scholar 

  42. S.P. Jang, S.U. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84(21), 4316–4318 (2004)

    Article  ADS  Google Scholar 

  43. M.H. Esfe, A.A.A. Arani, M. Firouzi, Empirical study and model development of thermal conductivity improvement and assessment of cost and sensitivity of EG-water based SWCNT-ZnO (30%:70%) hybrid nanofluid, J. Molecular Liquids (2017)

  44. M.H. Esfe, et al. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Thermal Eng. (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Esfandeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Esfandeh, S. Comparative thermal analysis of an EG-based nanofluid containing DWCNTs. Eur. Phys. J. Plus 136, 469 (2021). https://doi.org/10.1140/epjp/s13360-021-01412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01412-0

Navigation