Skip to main content
Log in

Excitation of a Moving Oscillator

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We calculate transition amplitudes and probabilities between the coherent and Fock states of a quantum harmonic oscillator with a moving center for an arbitrary law of motion. These quantities are determined by the Fourier transform of the moving center acceleration. In the case of a constant acceleration, the probabilities oscillate with the oscillator frequency, so that no excitation occurs after every period. Examples of oscillating and rotating motion of the harmonic trap center are considered too. Estimations show that the effect of excitation of vibration states due to the motion of the harmonic trap center can be observed in available atomic traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pimpale, S. Holloway, and R. J. Smith, J. Phys. A: Math. Gen., 24, 3533 (1991).

    Article  ADS  Google Scholar 

  2. C.-C. Lee and C.-L. Ho, Phys. Rev. A, 65, 022111 (2002).

    Article  ADS  Google Scholar 

  3. M. L. Chiofalo, M. Artoni, and G. C. La Rocca, New J. Phys., 5, 78 (2003).

    Article  ADS  Google Scholar 

  4. M. R. A. Shegelski, T. Poole, and C. Thompson, Eur. J. Phys., 34, 569 (2013).

    Article  Google Scholar 

  5. R. M. Dimeo, Am. J. Phys., 82, 142 (2014).

    Article  ADS  Google Scholar 

  6. J.-Y. Ge and J. Z. H. Zhang, J. Chem. Phys., 105, 8628 (1996).

    Article  ADS  Google Scholar 

  7. S. Miyashita, J. Phys. Soc. Jpn., 76, 104003 (2007).

    Article  ADS  Google Scholar 

  8. M. Hron and M. Razavy, Canad. J. Phys., 59, 394 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Beauchard and J.-M. Coron, J. Func. Anal., 232, 328 (2006).

    Article  Google Scholar 

  10. A. Pimpale and M. Razavy, Fortschr. Phys., 89, 85 (1991).

    Article  Google Scholar 

  11. B. K. Cheng and M. G. E. da Luz, Phys. Rev. A, 47, 4720 (1993).

    Article  ADS  Google Scholar 

  12. A. V. Pimpale, Prog. Quantum Electron., 28, 345 (2004).

    Article  ADS  Google Scholar 

  13. E. Granot and A. Marchewka, Eur. Phys. Lett., 86, 20007 (2009).

    Article  ADS  Google Scholar 

  14. G. Breit, Ann. Phys. (N.Y.), 34, 377 (1965).

  15. G. H. Herling and Y. Nishida, Ann. Phys. (N.Y.), 34, 400 (1965).

  16. Y. Nishida, Ann. Phys. (N.Y.), 34, 415 (1965).

  17. S. K. Zhdanov and A. S. Chikhachev, Dokl. Akad. Nauk SSSR, 218, 1323 (1974) [Sov. Phys. – Doklady, 19, 696 (1975)].

  18. E. A. Solov’ev, Theor. Math. Phys., 28, 757 (1976).

    Article  Google Scholar 

  19. W. Dappen, J. Phys. B: At. Mol. Phys., 10, 2399 (1977).

    Article  ADS  Google Scholar 

  20. H. Danared, J. Phys. B: At. Mol. Phys., 17, 2619 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  21. G. Scheitler and M. Kleber, Phys. Rev. A, 42, 55 (1990).

    Article  ADS  Google Scholar 

  22. V. I. Man’ko and A. S. Chikhachev, Zh. ´ Eksp. Teor. Fiz., 113, 606 (1998) [J. Exp. Theor. Phys., 86, 335 (1998)].

  23. A. S. Chikhachev, Theor. Math. Phys., 145, 1703 (2005).

    Article  MathSciNet  Google Scholar 

  24. A. S. Chikhachev, J. Russ. Las. Res., 26, 33 (2005).

    Article  Google Scholar 

  25. B. Hamil and L. Chetouani, Pramana–J. Phys., 86, 737 (2016).

    Article  ADS  Google Scholar 

  26. I. Duru, J. Phys. A: Math. Gen., 22, 4827 (1989).

    Article  ADS  Google Scholar 

  27. D. J. Hurley and M. A. Vandyck, Found. Phys., 41, 667 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Reichle, D. Leibfried, R. B. Blakestad, et al., Fortschr. Phys., 54, 666 (2006).

    Article  Google Scholar 

  29. A. Couvert, T. Kawalec, G. Reinaudi, and D. Gu´ery-Odelin, Eur. Phys. Lett., 83, 13001 (2008).

  30. E. Torrontegui, S. Ibáñez, X. Chen, et al., Phys. Rev. A, 83, 013415 (2011).

    Article  ADS  Google Scholar 

  31. D. Gu´ery-Odelin and J. G. Muga, Phys. Rev. A, 90, 063425 (2014).

  32. M. S. Bartlett and J. E. Moyal, Math. Proc. Cambridge Philos. Soc., 45, 545 (1949).

    Article  ADS  Google Scholar 

  33. R. P. Feynman, Phys. Rev., 80, 440 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  34. G. Ludwig, Z. Phys., 130, 468 (1951).

    Article  ADS  Google Scholar 

  35. R. P. Feynman, Phys. Rev., 84, 108 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  36. R. J. Glauber, Phys. Rev., 84, 395 (1951).

    Article  ADS  Google Scholar 

  37. K. Husimi, Prog. Theor. Phys., 9, 381 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  38. J. Schwinger, Phys. Rev., 91, 728 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  39. E. H. Kerner, Canad. J. Phys., 36, 371 (1958).

    Article  ADS  Google Scholar 

  40. R. W. Fuller, S. M. Harris, and E. L. Slaggie, Am. J. Phys., 31, 431 (1963).

    Article  ADS  Google Scholar 

  41. L. M. Scarfone, Am. J. Phys., 32, 158 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Carruthers and M. Nieto, Am. J. Phys., 33, 537 (1965).

    Article  ADS  Google Scholar 

  43. D. M. Gilbey and F. O. Goodman, Am. J. Phys., 34, 143 (1966).

    Article  ADS  Google Scholar 

  44. M. M. Ninan and Z. Stipcevic, Am. J. Phys., 37, 734 (1969).

    Article  ADS  Google Scholar 

  45. E. Merzbacher, Quantum Mechanics, Wiley, New York (1970), Ch. 15.

  46. B. Y. Zel’dovich, A. M. Perelomov, and V. S. Popov, Sov. Phys.–JETP, 30, 111 (1970).

  47. I. A. Malkin and V. I. Man’ko, Phys. Lett. A, 32, 243 (1970).

    Article  ADS  Google Scholar 

  48. V. V. Dodonov and V. I. Man’ko, Invariants and correlated states of nonstationary quantum systems, in: Invariants and the Evolution of Nonstationary Quantum Systems, Proceedings of Lebedev Physical Institute, Nova Science, Commack, New York (1989), Vol. 183, p. 103.

  49. V. S. Popov, Physics–Uspekhi, 50, 1217 (2007).

    Article  ADS  Google Scholar 

  50. A. Erdélyi, Ed., Bateman Manuscript Project, Higher Transcendental Functions, McGraw-Hill, New York (1953).

    Google Scholar 

  51. G. Rosen, Am. J. Phys., 40, 683 (1972).

    Article  ADS  Google Scholar 

  52. D. M. Greenberger and A. W. Overhauser, Rev. Mod. Phys., 51, 43 (1979).

    Article  ADS  Google Scholar 

  53. K. E. Cahill and R. J. Glauber, Phys. Rev., 177, 1857 (1969).

    Article  ADS  Google Scholar 

  54. A. J. Leggett, Rev. Mod. Phys., 73, 307 (2001).

    Article  ADS  Google Scholar 

  55. A. L. Fetter, Rev. Mod. Phys., 81, 647 (2009).

    Article  ADS  Google Scholar 

  56. M. Palmero, S. Wang, D. Guéry-Odelin, et al., New J. Phys., 18, 043014 (2016).

    Article  ADS  Google Scholar 

  57. I. Lizuain, A. Tobalina, A. Rodriguez-Prieto, and J. G. Muga, J. Phys. A: Math. Theor., 52, 465301 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor V. Dodonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodonov, V.V. Excitation of a Moving Oscillator. J Russ Laser Res 42, 243–249 (2021). https://doi.org/10.1007/s10946-021-09957-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09957-2

Keywords

Navigation