Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 22, 2021

A compact single element dielectric resonator MIMO antenna with low mutual coupling

  • Ashim Kumar Biswas ORCID logo EMAIL logo and Ujjal Chakraborty
From the journal Frequenz

Abstract

A two-port multiple input multiple output (MIMO) dielectric resonator antenna is proposed where two orthogonally connected feed lines are combined to unite two orthogonally produced modes. The feed lines build a hybrid network. The backplane is defected by a circular defected ground structure (CDGS), which is extended by two rectangular slits placed orthogonally with the input ports. The antenna uses a single ‘H/I’-shaped dielectric resonator (DR) element. It covers frequency spectrum from 7.29 to 10.65 GHz and fulfils the international telecommunication union (ITU) (8–8.5 GHz) and Maritime Radio Navigational (8.85–9 and 9.2–9.5 GHz) application bands. The antenna offers very high port isolation (>18 dB) and diversity properties throughout the whole application band. The antenna also provides circular polarization (AR ≤ 3 dB) in the operating ranges from 8 to 8.25 GHz and 8.85 to 8.9 GHz. Simulated and measured results make clear to the antenna most suitable for MIMO operation.


Corresponding author: Ashim Kumar Biswas, Department of Electronics and Communication Engineering, NIT Silchar, Cachar, Assam, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. K. Biswas, S. S. Pattanayak, and U. Chakraborty, “Evaluation of dielectric properties of colored resin plastic button to design a small MIMO antenna,” IEEE Trans. Instrum. Meas., vol. 69, pp. 9170–9177, 2020. https://doi.org/10.1109/TIM.2020.2999736.Search in Google Scholar

[2] H. Yigit and A. Kavak, “Analytical derivation of 2 × 2 MIMO channel capacity in terms of multipath angle spread and signal strength,” Frequenz, vol. 66, pp. 97–100, 2012. https://doi.org/10.1515/freq-2012-0023.Search in Google Scholar

[3] M. H. Reddy, D. Sheela, V. K. Parbot, and A. Sharma, “A compact metamaterial inspired UWB-MIMO fractal antenna with reduced mutual coupling,” Microsyst. Technol., vol. 43, 2020. https://doi.org/10.1007/s00542-020-05024-z.Search in Google Scholar

[4] L. Liu, C. Liu, Z. Li, X. Yin, and Z. N. Chen, “Slit-slot line and its application to low cross-polarization slot antenna and mutual-coupling suppressed tripolarized MIMO antenna,” IEEE Trans. Antenn. Propag., vol. 67, no. 1, pp. 4–15, 2019. https://doi.org/10.1109/TAP.2018.2876166.Search in Google Scholar

[5] S. S. Jehangir and M. S. Sharawi, “A wideband sectoral Quasi-Yagi MIMO antenna system with multibeam elements,” IEEE Trans. Antenn. Propag., vol. 67, pp. 1898–1903, 2019. https://doi.org/10.1109/TAP.2018.2889034.Search in Google Scholar

[6] L. Zou, D. Abbott, and C. Fumeaux, “Omnidirectional cylindrical dielectric resonator antenna with dual polarization,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 515–518, 2012. https://doi.org/10.1109/LAWP.2012.2199277.Search in Google Scholar

[7] S. Aqeel, S. Khan, A. A. Khan, O. Owais, J. Saleem, and M. B. Qureshi, “A compact MIMO DRA with simultaneous frequency and isolation reconfiguration,” Microw. Opt. Technol. Lett., vol. 63, pp. 336–344, 2020. https://doi.org/10.1002/mop.32587.Search in Google Scholar

[8] J. B. Yan and J. T. Bernhard, “Design of a MIMO dielectric resonator antenna for LTE femtocell base stations,” IEEE Trans. Antenn. Propag., vol. 60, pp. 438–444, 2012. https://doi.org/10.1109/TAP.2011.2174021.Search in Google Scholar

[9] R. Maryam, A. R. M. Jalil, A. Keshtkarc, et al.., “Suppression of mutual coupling in rectangular dielectric resonator antenna arrays using Epsilon-Negative metamaterials (ENG),” J. Electromagn. Waves Appl., vol. 33, no. 9, pp. 1211–1223, 2019. https://doi.org/10.1080/09205071.2019.1605941.Search in Google Scholar

[10] G. Bharti, D. Kumar, A. K. Gautam, and A. Sharma, “Two-port ring-shaped dielectric resonator-based diversity radiator with dual-band and dualpolarized features,” Microw. Opt. Technol. Lett., vol. 62, no. 2, pp. 581–588, 2020. https://doi.org/10.1002/mop.32053.Search in Google Scholar

[11] G. Das, A. Sharma, R. K. Gangwar, and M. S. Sharawi, “Compact back-to-back DRA-based four-port MIMO antenna system with bi-directional diversity,” Electron. Lett., vol. 54, no. 14, pp. 884–886, 2018. https://doi.org/10.1049/el.2018.0959.Search in Google Scholar

[12] S. Danesh, S. K. A. Rahim, M. Abedian, and M. R. Hamid, “A compact frequency-reconfigurable dielectric resonator antenna for LTE/WWAN and WLAN applications,” IEEE Antenn. Wireless Propag. Lett., vol. 14, pp. 486–489, 2015. https://doi.org/10.1109/LAWP.2014.2369411.Search in Google Scholar

[13] S. Banerjee and S. K. Parui, “Bandwidth improvement of substrate integrated waveguide cavity backed slot antenna with dielectric resonators,” Microsyst. Technol., vol. 26, pp. 1359–1368, 2019. https://doi.org/10.1007/s00542-019-04668-w.Search in Google Scholar

[14] A. Petosa, Dielectric Resonator Antenna Handbook, Norwood, MA, USA, Artech House, 2007.Search in Google Scholar

[15] M. S. Sharawi, S. K. Podilchak, M. U. Khan, and Y. M. Antar, “Dual-frequency DRA-based MIMO antenna system for wireless access points,” IET Microw. Antennas Propag., vol. 11, pp. 1174–1182, 2017. https://doi.org/10.1049/iet-map.2016.0671.Search in Google Scholar

[16] R. Tian, V. Plicanic, B. K. Lau, et al.., “A compact six-port dielectric resonator antenna array: MIMO channel measurements and performance analysis,” IEEE Trans. Antenn. Propag., vol. 58, pp. 1369–1379, 2010. https://doi.org/10.1109/TAP.2010.2041174.Search in Google Scholar

[17] S. F. Roslan, M. R. Kamarudin, M. Khalily, and M. H. Jamaluddin, “An MIMO rectangular dielectric resonator antenna for 4G applications,” IEEE Antenn. Wireless Propag. Lett., vol. 13, pp. 321–324, 2014. https://doi.org/10.1109/LAWP.2014.2305696.Search in Google Scholar

[18] Y. Zhang, J. Y. Deng, M. J. Li, D. Sun, and L. X. Guo, “A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications,” IEEE Antenn. Wireless Propag. Lett., vol. 18, pp. 747–751, 2019. https://doi.org/10.1109/LAWP.2019.2901961.Search in Google Scholar

[19] A. K. Biswas and U. Chakraborty, “Investigation on decoupling of wide band wearable multiple-input multiple-output antenna elements using microstrip neutralization line,” Int. J. RF Microw. Computer-Aided Eng., vol. 29, no. 7, pp. 1–11, 2019, Art no. e21723. https://doi.org/10.1002/mmce.21723.Search in Google Scholar

[20] R. K. Mongia and P. Bhartia, “Dielectric resonator antennas-a review and general design relations for resonant frequency and bandwidth,” Int. J. Microw. Millimet. Wave Comput. Aided Eng., vol. 4, pp. 230–247, 1994. https://doi.org/10.1002/mmce.4570040304.Search in Google Scholar

[21] M. S. Sharawi, Printed MIMO Antenna Engineering, Norwood, MA, USA, Artech House, 2014.Search in Google Scholar

[22] S. Blanch, J. Romeu, and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electron. Lett., vol. 39, pp. 705–707, 2003. https://doi.org/10.1049/el:20030495.10.1049/el:20030495Search in Google Scholar

[23] R. Chandel, A. K. Gautam, and K. Rambabu, “Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics,” IEEE Trans. Antenn. Propag., vol. 66, no. 4, pp. 1677–1684, 2018. https://doi.org/10.1109/TAP.2018.2803134.Search in Google Scholar

[24] A. K. Biswas and U. Chakraborty, “Compact wearable MIMO antenna with improved port isolation for ultra-wideband applications.” IET Microw., Antennas Propag., vol. 13, no. 4, pp. 498–504, 2019. https://doi.org/10.1049/iet-map.2018.5599.Search in Google Scholar

[25] Y. K. Choukiker, S. K. Sharma, and S. K. Behera, “Hybrid fractal shape planer monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices,” IEEE Trans. Antenn. Propag., vol. 62, pp. 1483–1488, 2014. https://doi.org/10.1109/TAP.2013.2295213.Search in Google Scholar

[26] A. Iqbal, O. A. Saraereh, A. W. Ahmad, and S. Bashir, “Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna,” IEEE Access, vol. 6, pp. 2755–2759, 2018. https://doi.org/10.1109/ACCESS.2017.2785232.Search in Google Scholar

[27] J. Nasir, M. H. Jamaluddin, M. Khalily, et al.., “A reduced size dual port MIMO DRA with high isolation for 4G applications,” Int. J. RF Microw. Computer-Aided Eng., vol. 25, pp. 495–501, 2015. https://doi.org/10.1002/mmce.20884.Search in Google Scholar

[28] S. Ko and R. Murch, “Compact integrated diversity antenna for wireless communications,” IEEE Trans. Antenn. Propag., vol. 49, pp. 954–960, 2001. https://doi.org/10.1109/8.931154.Search in Google Scholar

[29] A. K. Biswas and U. Chakraborty, “Complementary meander-line-inspired dielectric resonator multiple-input-multiple-output antenna for dual-band applications,” Int. J. RF Microw. Computer-Aided Eng., vol. 29, no. 12, pp. 1–12, 2019, Art no. e21970. https://doi.org/10.1002/mmce.21970.Search in Google Scholar

[30] S. Pahadsingh and S. Sahu, “An integrated MIMO filtenna with wide band-narrow band functionality,” Int. J. Electron. Commun. AEU, vol. 110, pp. 1–11, 2019. https://doi.org/10.1016/j.aeue.2019.152862.Search in Google Scholar

Received: 2020-09-29
Accepted: 2021-02-09
Published Online: 2021-02-22
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2020-0167/html
Scroll to top button