Skip to main content
Log in

Distributed Entangled State Production by Using Quantum Repeater Protocol

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider entangled state production utilizing a full optomechanical arrangement, based on which we create entanglement between two far three-level V-type atoms using a quantum repeater protocol. At first, we consider eight identical atoms (1,2,⋯ ,8), while adjacent pairs (i,i + 1) with i = 1,3,5,7 have been prepared in entangled states and the atoms 1, 8 are the two target atoms. The three-level atoms (1,2,3,4) and (5,6,7,8) distinctly become entangled with the system including optical and mechanical modes by performing the interaction in optomechanical cavities between atoms (2,3) and (6,7), respectively. Then, by operating appropriate measurements, instead of Bell state measurement which is a hard task in practical works, the entangled states of atoms (1,4) and (5,8) are achieved. Next, via interacting atoms (4,5) of the pairs (1,4) and (5,8) and operating proper measurement, the entangled state of target atoms (1,8) is obtained. In the continuation, entropy and success probability of the produced entangled state are then evaluated. It is observed that the time period of entropy is increased by increasing the mechanical frequency (ωM) and by decreasing optomechanical coupling strength to the field modes (G). Also, in most cases, the maximum of success probability is increased by decreasing G and via decreasing ωM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Each ket of (5) is related to \(|{(a_{1}, a^{\dagger }_{1}),(a_{2}, a^{\dagger }_{2});(b_{1}, b^{\dagger }_{1}),(b_{2}, b^{\dagger }_{2});\text {atom}1(5),\text {atom} 2(6);\text {atom} 3(7),\text {atom} 4(8)}\rangle \). For instance, the first term in state (5), i.e., \(|0, 0; 0, 0;\widetilde {1},\widetilde {3};\widetilde {3},\widetilde {1} \rangle \), means that the optical and the mechanical modes are in the vacuum state |0, 0〉⊗|0, 0〉 and the atoms 1, 2 (as well as 5, 6) are in the state \(|\widetilde {1},\widetilde {3}\rangle \) and the atoms 3, 4 (as well as 7, 8) are in the state \(|\widetilde {3},\widetilde {1}\rangle \).

  2. The ket |0, 0〉 (in the projection operator with the state \(|0, 0 \rangle \otimes |\widetilde {3},\widetilde {1}\rangle \)) is related to optical and mechanical mode denoted by \((a_{1}, a^{\dagger }_{1})\) and \((b_{1}, b^{\dagger }_{1})\), respectively. Also, the state \(|\widetilde {3},\widetilde {1}\rangle \) is related to atoms 2, 3 (and 6, 7). These explanations can be easily repeated for state \(|0, 0 \rangle \otimes |\widetilde {1},\widetilde {3}\rangle \).

  3. Each ket of (11) is related to \(|{(a_{1}, a^{\dagger }_{1}),(a_{2}, a^{\dagger }_{2});(b_{1}, b^{\dagger }_{1}),(b_{2}, b^{\dagger }_{2});\text {atom}1,\text {atom}4;\text {atom}5,\text {atom}8}\rangle \). The used method to calculate the coefficients of state (11) has been explained in Appendix C.

  4. Note that the ket |0, 0〉 is related to optical and mechanical mode denoted by \((a_{1}, a^{\dagger }_{1})\) and \((b_{1}, b^{\dagger }_{1})\), respectively, also, the state \(|\widetilde {3},\widetilde {1}\rangle \) is related to atoms 4, 5.

  5. Note that the ket |0, 0〉 is related to optical and mechanical mode denoted by \((a_{1}, a^{\dagger }_{1})\) and \((b_{1}, b^{\dagger }_{1})\), respectively, also, the state \(|\widetilde {1},\widetilde {3}\rangle \) is related to atoms 4, 5.

  6. To find differences between the results achieved in this paper and our previous work [28], the amounts of ωM and G in this paper have been selected similar to the parameters introduced in Ref. [28], so the presented Figs. 2a, b and 3 are similar to figures 2, 3 in Ref. [28].

References

  1. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: . Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  2. Bernad, J.Z.: . Phys. Rev. A 96, 052329 (2017)

    Article  ADS  Google Scholar 

  3. Ghasemi, M., Tavassoly, M.K.: . Quantum Inf. Process. 18, 113 (2019)

    Article  ADS  Google Scholar 

  4. Ghasemi, M., Tavassoly, M.K.: . J. Phys. B: At. Mol. Opt. Phys. 52, 085502 (2019)

    Article  ADS  Google Scholar 

  5. Agarwal, G.S.: Quantum Optics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  6. Pakniat, R., Zandi, M.H., Tavassoly, M.K.: . Eur. Phys. J. Plus 132, 3 (2017)

    Article  Google Scholar 

  7. Ghasemi, M., Tavassoly, M.K.: . Eur. Phys. J. Plus 131, 297 (2016)

    Article  Google Scholar 

  8. Ghasemi, M., Tavassoly, M.K., Nourmandipour, A.: . Eur. Phys. J. Plus 132, 531 (2017)

    Article  Google Scholar 

  9. Nourmandipour, A., Tavassoly, M.K., Mancini, S.: . Quantum Inf. Comput. 16, 11 (2016)

    Google Scholar 

  10. Pakniat, R., Tavassoly, M.K., Zandi, M.H.: . Chin. Phys. B 25, 100303 (2016)

    Article  ADS  Google Scholar 

  11. Yang, M., Song, W., Cao, Z.-L.: . Phys. Rev. A 71, 034312 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Pakniat, R., Tavassoly, M.K., Zandi, M.H.: . Opt. Commun. 382, 381 (2017)

    Article  ADS  Google Scholar 

  13. Pakniat, R., Soltani, M., Tavassoly, M.K.: . J. Int. Mod. Phys. B 32, 1850093 (2018)

    Article  ADS  Google Scholar 

  14. Jaynes, E.T., Cummings, F.W.: . Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  15. Shen, L.-T., Shi, Z.-C., Wu, H.-Z., Yang, Z.-B.: . Entropy 19, 331 (2017)

    Article  ADS  Google Scholar 

  16. Tavis, M., Cummings, F.W.: . Phys. Rev. 170, 379 (1968)

    Article  ADS  Google Scholar 

  17. Wang, X.-C., Yang, M.: . Int. J. Theor. Phys. 50, 1479 (2011)

    Article  Google Scholar 

  18. Wang, W., Cao, H.: . Int. J. Theor. Phys. 52, 2099 (2013)

    Article  Google Scholar 

  19. Song, Y., Li, Y., Wang, W.: . Int. J. Theor. Phys. 57, 1559 (2018)

    Article  Google Scholar 

  20. Tittel, W., Afzelius, M., Chaneliere, T., Cone, R.L., Kröll, S., Moiseev, S.A., Sellars, M.: . Laser Photonics Rev. 4, 244 (2010)

    Article  ADS  Google Scholar 

  21. Li, T., Yang, G.-J., Deng, F.-G.: . Phys. Rev. A 93, 012302 (2016)

    Article  ADS  Google Scholar 

  22. Wang, T.-J., Song, S.-Y., Long, G.L.: . Phys. Rev. A 85, 062311 (2012)

    Article  ADS  Google Scholar 

  23. Zhao, B., Müller, M., Hammerer, K., Zoller, P.: . Phys. Rev. A 81, 052329 (2010)

    Article  ADS  Google Scholar 

  24. Ladd, T.D., van Loock, P., Nemoto, K., Munro, W.J., Yamamoto, Y.: . New J. Phys. 8, 184 (2006)

    Article  ADS  Google Scholar 

  25. Yi, X.-F., Xu, P., Yao, Q., Quan, X.: . Quantum Inf. Process. 18, 82 (2019)

    Article  ADS  Google Scholar 

  26. Ghasemi, M., Tavassoly, M.K.: . EPL (Europhysics Letters) 123, 24002 (2018)

    Article  ADS  Google Scholar 

  27. Ghasemi, M., Tavassoly, M.K.: . Laser Phys. 29, 085202 (2019)

    Article  ADS  Google Scholar 

  28. Ghasemi, M., Tavassoly, M.K.: . J. Opt. Soc. Am. B 36, 10 (2019)

    Article  Google Scholar 

  29. Ghasemi, M., Tavassoly, M.K.: . Phys. Lett. A 384, 28 (2020)

    Article  Google Scholar 

  30. Bougouffa, S., Al-Hmoud, M.: . Int. J. Theor. Phys. 59, 6 (2020)

    Article  Google Scholar 

  31. Rehaily, A.A., Bougouffa, S.: . Int. J. Theor. Phys. 56, 5 (2017)

    Article  Google Scholar 

  32. Bougouffa, S., Ficek, Z.: . Phys. Rev. A 102, 4 (2020)

    Google Scholar 

  33. Al-Awfi, S., Al-Hmoud, M., Bougouffa, S.: . EPL (Europhysics Letters) 123, 1 (2018)

    Article  Google Scholar 

  34. Joshi, A., Xiao, M.: . Opt. Commun. 232, 1–6 (2004)

    Article  Google Scholar 

  35. Weidinger, M., Varcoe, B.T.H., Heerlein, R., Walther, H.: . Phys. Rev. Lett. 82, 19 (1999)

    Article  Google Scholar 

  36. Vanner, M.R., Aspelmeyer, M., Kim, M.S.: . Phys. Rev. Lett. 110, 1 (2013)

    Article  Google Scholar 

  37. Li, J., Groblacher, S., Zhu, S.Y., Agarwal, G.S.: . Phys. Rev. A 98, 1 (2018)

    Google Scholar 

  38. Ho, M., Oudot, E., Bancal, J.D., Sangouard, N.: . Phys. Rev. Lett. 121, 2 (2018)

    Google Scholar 

  39. Schwab, K.C., Roukes, M.L.: . Phys. Today 58, 36 (2005)

    Article  Google Scholar 

  40. Liu, N., Li, J., Liang, J.-Q.: . Int. J. Theor. Phys. 52, 706 (2013)

    Article  Google Scholar 

  41. Nadiki, M.H., Tavassoly, M.K.: . Laser Phys. 26, 125204 (2016)

    Article  ADS  Google Scholar 

  42. Nadiki, M.H., Tavassoly, M.K.: . Ann. Phys. 386, 275 (2017)

    Article  ADS  Google Scholar 

  43. Nadiki, M.H., Tavassoly, M.K., Yazdanpanah, N.: . Eur. Phys. J. D 72, 110 (2018)

    Article  ADS  Google Scholar 

  44. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: . Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  45. Camerer, S., Korppi, M., Jockel, A., Hunger, D., Hansch, T.W., Treutlein, P.: . Phys. Rev. Lett. 107, 22 (2011)

    Article  Google Scholar 

  46. Ian, H., Gong, Z.R., Liu, Y.-X., Sun, C.P., Nori, F.: . Phys. Rev. A 78, 1 (2008)

    Article  Google Scholar 

  47. Wang, J., Tian, X.-D., Liu, Y.-M., Cui, C.-L., Wu, J.-H.: . Laser Phys. 28, 6 (2018)

    Google Scholar 

  48. Bai, C.-H., Wang, D.-Y., Wang, H.-F., Zhu, A.-D., Zhang, S.: Sci. Rep 6 (2016)

  49. Liao, Q.-H., Zhang, Q., Zhou, N.-R.: . J. Korean Phys. Soc. 69, 4 (2016)

    Google Scholar 

  50. Liao, Q.H., Nie, W.J., Xu, J., Liu, Y., Zhou, N.R., Yan, Q.R., Chen, A., Liu, N.H., Ahmad, M.A.: . Laser Phys. 26, 5 (2016)

    Article  Google Scholar 

  51. Barzanjeh, S. h., Naderi, M.H., Soltanolkotabi, M.: . Phys. Rev. A 84, 6 (2011)

    Google Scholar 

  52. Zhou, L., Han, Y., Jing, J., Zhang, W.: . Phys. Rev. A 83, 052117 (2011)

    Article  ADS  Google Scholar 

  53. Bagheri, M., Poot, M., Li, M., Pernice, W.P.H., Tang, H.X.: . Nat. Nanotechnol. 6, 726 (2011)

    Article  ADS  Google Scholar 

  54. Ludwig, M., Safavi-Naeini, A.H., Painter, O., Marquardt, F.: . Phys. Rev. Lett. 109, 063601 (2012)

    Article  ADS  Google Scholar 

  55. Vitali, D., Gigan, S., Ferreira, A., Bohm, H.R., Tombesi, P., Guerreiro, A., Vedral, V.: . Phys. Rev. Lett. 98, 3 (2007)

    Article  Google Scholar 

  56. Wang, Y.-D., Clerk, A.A.: . Phys. Rev. Lett. 110, 25 (2013)

    Google Scholar 

  57. Hofer, S.G., Wieczorek, W., Aspelmeyer, M., Hammerer, K.: . Phys. Rev. A 84, 5 (2011)

    Article  Google Scholar 

  58. Liao, J.-Q., Wu, Q.-Q., Nori, F.: . Phys. Rev. A 89, 1 (2014)

    Google Scholar 

  59. Aloufi, K. h., Bougouffa, S., Ficek, Z.: . Phys. Scr. 90, 074020 (2015)

    Article  ADS  Google Scholar 

  60. Courty, J.-M., Heidmann, A., Pinard, M.: . Eur. Phys. J. D: At. Mol. Opt. Plasma Phys. 17, 3 (2001)

    Article  Google Scholar 

  61. Page, M.A., Zhao, C., Blair, D.G., Ju, L., Ma, Y., Pan, H.-W., Chao, S., Mitrofanov, V.P., Sadeghian, H.: . J. Phys. D: Appl. Phys. 49, 45 (2016)

    Article  Google Scholar 

  62. Rosenfeld, W., Weber, M., Volz, J., Henkel, F., Krug, M., Cabello, A., Zukowski, M., Weinfurter, H.: . Adv. Sci. Lett. 2, 4 (2009)

    Article  Google Scholar 

  63. Feng, X.-L., Zhang, Z.M., Li, X.D., Gong, S.Q., Xu, Z.Z.: . Phys. Rev. Lett. 90, 21 (2003)

    Article  Google Scholar 

  64. Hofmann, J., Krug, M., Ortegel, N., Gerard, L., Weber, M., Rosenfeld, W., Weinfurter, H.: . Science 337, 6090 (2012)

    Article  Google Scholar 

  65. James, D.F.V., Jerke, J.: . Can. J. Phys. 85, 625 (2007)

    Article  ADS  Google Scholar 

  66. Gamel, O., James, D.F.V.: . Phys. Rev. A 82, 052106 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Tavassoly.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The used approach to obtain the effective Hamiltonian (4)

As mentioned prior to (4), following the approach explained in Refs. [65, 66], the effective Hamiltonian (4) can be obtained. In this approach, at first using the Hamiltonian (2) and the following Baker-Hausdorff lemma:

$$ \begin{array}{@{}rcl@{}} \hat{H}^{\text{int}}(t)&=&e^{i \hat{H}_{0} t} \hat{H}_{1}e^{-i \hat{H}_{0} t}\\ &=&\hat{H}_{1}+it\left[\hat{H}_{0},\hat{H}_{1} \right]+\frac{(it)^{2}}{2!} \left[\hat{H}_{0},\left[\hat{H}_{0},\hat{H}_{1} \right]\right]+\cdots \end{array} $$
(23)

the Hamiltonian in the interaction picture is obtained. As stated in Refs. [65, 66], after calculating the Hamiltonian in the interaction picture with the following form:

$$ \begin{array}{@{}rcl@{}} \hat{H}^{\text{int}}(t)=\sum\limits_{n=1}^{N}\hat{h}_{n} \exp({-i\omega_{n}t})+\hat{h}_{n}^{\dagger} \exp({i\omega_{n}t}), \end{array} $$
(24)

the effective Hamiltonian can be obtained as below:

$$ \begin{array}{@{}rcl@{}} \hat{H}^{\text{eff}}(t)=\sum\limits_{m,n=1}^{N}\frac{1}{\hbar{\omega}_{{mn}}}[\hat{h}_{m}^{\dagger},\hat{h}_{n}] \exp\left( {i\left[\omega_{m}-\omega_{n}\right]}t\right). \end{array} $$
(25)

In (24), (25), ωn(m) > 0 is frequency and N is the total number of different harmonic terms making up the interaction Hamiltonian. Also, ωmn is defined by the following equation:

$$ \begin{array}{@{}rcl@{}} \frac{1}{{\omega}_{{mn}}}=\frac{1}{2}\left( \frac{1}{\omega_{m}}+\frac{1}{\omega_{n}}\right), \end{array} $$
(26)

which may be considered as the harmonic average of ωm and ωn. In our case, the effective Hamiltonian (4) has been obtained using (3), (24), (25) and (26).

Appendix B: Calculating the coefficients of entangled state (5)

In this section, the differential equations related to the state (5) with the help of effective Hamiltonian (4) and the time-dependent Schrödinger equation are obtained as \(\dot {X}=SX\), where \(\dot {X}\) and S are respectively defined as follow,

$$ \begin{array}{@{}rcl@{}} \dot{X}&=& \frac{d}{dt} \left( \begin{array}{ccccccccccc} A_{1}(t) & A_{2}(t) & A_{3}(t) & A_{4}(t) & A_{5}(t) & A_{6}(t) & A_{7}(t) & A_{8}(t) & A_{9}(t) & A_{10}(t) & A_{11}(t) \end{array} \right)^{T},\\ \end{array} $$
(27)
$$ S= \left( \begin{array}{ccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & -i\frac{{\lambda^{2}_{1}}}{\omega_{M}} & -i\frac{{\lambda^{2}_{1}}}{\omega_{M}} & i\frac{G \lambda_{1}}{\omega_{M}} & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & -i\frac{{\lambda^{2}_{1}}}{\omega_{M}} & -i\frac{{\lambda^{2}_{1}}}{\omega_{M}} & i\frac{G \lambda_{1}}{\omega_{M}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & i\frac{G \lambda_{1}}{\omega_{M}} & i\frac{G \lambda_{1}}{\omega_{M}} & i\frac{ (2{\lambda^{2}_{1}}+ G^{2})}{\omega_{M}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 i\frac{ {\lambda^{2}_{1}}}{\omega_{M}} & i\frac{G \lambda_{1}}{\omega_{M}} & i\frac{G \lambda_{1}}{\omega_{M}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & i\frac{G \lambda_{1}}{\omega_{M}} & -i\frac{ ({\lambda^{2}_{1}}-G^{2})}{\omega_{M}} & -i\frac{{\lambda^{2}_{1}}}{\omega_{M}} & 2 i\frac{ G \lambda_{1}}{\omega_{M}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & i\frac{G \lambda_{1}}{\omega_{M}} & -i\frac{{\lambda^{2}_{1}}}{\omega_{M}} & -i\frac{ ({\lambda^{2}_{1}}-G^{2})}{\omega_{M}} & 2 i\frac{G \lambda_{1}}{\omega_{M}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 i\frac{G \lambda_{1}}{\omega_{M}} & 2 i\frac{G \lambda_{1}}{\omega_{M}} & 4 i\frac{ ({\lambda^{2}_{1}}+ G^{2})}{\omega_{M}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -i\frac{{\lambda^{2}_{1}}}{\omega_{M}} & -i\frac{{\lambda^{2}_{1}}}{\omega_{M}} & i\frac{G \lambda_{1}}{\omega_{M}}\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -i\frac{{\lambda^{2}_{1}}}{\omega_{M}} & -i\frac{{\lambda^{2}_{1}}}{\omega_{M}} & i\frac{G \lambda_{1}}{\omega_{M}}\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & i\frac{G \lambda_{1}}{\omega_{M}} & i\frac{G \lambda_{1}}{\omega_{M}} & i\frac{(2 {\lambda^{2}_{1}}+ G^{2})}{\omega_{M}} \end{array} \right). $$
(28)

The equation \(\dot {A}_{1}(t)=0\) easily results in \(A_{1}(t)=\frac {1}{2}\). Also, paying attention to the considered initial conditions, we find that A2(t) = A9(t), A3(t) = A10(t), A4(t) = A11(t) and A6(t) = A7(t). Now, using Laplace transform and with the help of Mathematica software, the coefficients A4(t), A5(t), A8(t) and then the coefficients A2(t), A3(t) and A6(t) can be calculated, however, due to their complex and lengthy forms we ignore presenting their explicit forms.

Appendix C: Calculating the coefficients of entangled state (11)

The differential equations related to state (11) using the effective Hamiltonian (10) and the time-dependent Schrödinger equation are obtained as \(\dot {Y}=SY\), where S has been defined in (28) and \(\dot {Y}\) is defined as follows,

$$ \begin{array}{@{}rcl@{}} \dot{Y}&=& \frac{d}{d\tau} \left( \begin{array}{ccccccccccc} {B^{i}_{1}}(\tau) & {B^{i}_{2}}(\tau) & {B^{i}_{3}}(\tau) & {B^{i}_{4}}(\tau) & {B^{i}_{5}}(\tau) & {B^{i}_{6}}(\tau) & {B^{i}_{7}}(\tau) & {B^{i}_{8}}(\tau) & {B^{i}_{9}}(\tau) & B^{i}_{10}(\tau) & B^{i}_{11}(\tau) \end{array} \right)^{T}. \end{array} $$
(29)

Paying attention to (17), (20), it may be seen that, knowing the coefficients \({B^{i}_{2}}(\tau )\), \({B^{i}_{3}}(\tau )\), \({B^{i}_{9}}(\tau )\) and \(B^{i}_{10}(\tau )\) is enough for our purpose, and these coefficients can be obtained after calculating \({B^{i}_{4}}(\tau )\) and \(B^{i}_{11}(\tau )\) using Laplace transform and with the help of Mathematica software.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Tavassoly, M.K. Distributed Entangled State Production by Using Quantum Repeater Protocol. Int J Theor Phys 60, 1870–1882 (2021). https://doi.org/10.1007/s10773-021-04806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04806-z

Keywords

Navigation