Skip to main content

Advertisement

Log in

An explicit time-integrator with singular mass for non-smooth dynamics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This article addresses the simulation of non-smooth dynamics problems with unilateral contact constraints between rigid and deformable bodies. It proposes a modified CD-Lagrange scheme with a singular mass matrix. This scheme is explicit, and based on a contact condition on velocity. The formulation is designed for a 1D impact problem between deformable and rigid body with unilateral constraint. The singular mass matrix allows to get a more accurate energy balance on the discrete system, especially during non-smooth events. An extension is presented then for the 3D cases. Its implementation is easy, and fully compatible with large deformations or non-linear materials. Indeed it consists only in adding a numerical parameter for each contact node. The energy balance for the singular 3D formulation is improved compared to the consistent one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Code availability

All computations were done with a custom code.

References

  1. Acary V (2012) Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts. Appl Numer Math 62(10):1259–1275. https://doi.org/10.1016/j.apnum.2012.06.026

    Article  MathSciNet  MATH  Google Scholar 

  2. Belytschko T, Neal MO (1991) Contact-impact by the pinball algorithm with penalty and Lagrangian methods. Int J Numer Methods Eng 31(3):547–572. https://doi.org/10.1002/nme.1620310309

    Article  MATH  Google Scholar 

  3. Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, Chichester

    MATH  Google Scholar 

  4. Brüls O, Acary V, Cardona A (2014) Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-\(\alpha \) scheme. Comput Methods Appl Mech Eng 281(1):131–161. https://doi.org/10.1016/j.cma.2014.07.025

    Article  MathSciNet  MATH  Google Scholar 

  5. Carpenter NJ, Taylor RL, Katona MG (1991) Lagrange constraints for transient finite element surface contact. Int J Numer Methods Eng 32(1):103–128. https://doi.org/10.1002/nme.1620320107

    Article  MATH  Google Scholar 

  6. Chen QZ, Acary V, Virlez G, Brüls O (2013) A nonsmooth generalized-\(\alpha \) scheme for flexible multibody systems with unilateral constraints. Int J Numer Methods Eng 96(8):487–511. https://doi.org/10.1002/nme.4563

    Article  MathSciNet  MATH  Google Scholar 

  7. Chouly F, Fabre M, Hild P, Mlika R, Pousin J, Renard Y (2016) An overview of recent results on Nitsche’s method for contact problems. In: Bordas S, Burman E, Larson M, Olshanskii M (eds) UCL workshop 2016, UCL (University College London). Geometrically unfitted finite element methods and applications, vol 121. Springer, London, pp 93–141. https://doi.org/10.1007/978-3-319-71431-8_4

    Chapter  Google Scholar 

  8. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60(2):371–375. https://doi.org/10.1115/1.2900803

    Article  MathSciNet  MATH  Google Scholar 

  9. Cirak F, West M (2005) Decomposition contact response (DCR) for explicit finite element dynamics. Int J Numer Methods Eng 64(8):1078–1110. https://doi.org/10.1002/nme.1400

    Article  MathSciNet  MATH  Google Scholar 

  10. Curnier A (1999) Unilateral contact. In: Wriggers P, Panagiotopoulos P (eds) New developments in contact problems. Chapter 1. Springer, Vienna, pp 1–54. https://doi.org/10.1007/978-3-7091-2496-3

    Chapter  MATH  Google Scholar 

  11. Dabaghi F, Petrov A, Pousin J, Renard Y (2016) A robust finite element redistribution approach for elastodynamic contact problems. Appl Numer Math 103:48–71. https://doi.org/10.1016/j.apnum.2015.12.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Dabaghi F, Krejčí P, Petrov A, Pousin J, Renard Y (2019) A weighted finite element mass redistribution method for dynamic contact problems. J Comput Appl Math 345:338–356. https://doi.org/10.1016/j.cam.2018.06.030

    Article  MathSciNet  MATH  Google Scholar 

  13. Di Stasio J, Dureisseix D, Gravouil A, Georges G, Homolle T (2019) Benchmark cases for robust explicit time integrators in non-smooth transient dynamics. Adv Model Simul Eng Sci 6:2. https://doi.org/10.1186/s40323-019-0126-y

    Article  Google Scholar 

  14. Doyen D, Ern A, Piperno S (2011) Time-integration schemes for the finite element dynamic Signorini problem. SIAM J Sci Comput 33(1):223–249. https://doi.org/10.1137/100791440

    Article  MathSciNet  MATH  Google Scholar 

  15. Fekak FE, Brun M, Gravouil A, Depale B (2017) A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics. Comput Mech 60(1):1–21. https://doi.org/10.1007/s00466-017-1397-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Fetecau RC, Marsden JE, Ortiz M, West M (2003) Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM J Appl Dyn Syst 2(3):381–416. https://doi.org/10.1137/S1111111102406038

    Article  MathSciNet  MATH  Google Scholar 

  17. Hager C, Hüeber S, Wohlmuth BI (2007) A stable energy-conserving approach for frictional contact problems based on quadrature formulas. Int J Numer Methods Eng 73(2):205–225. https://doi.org/10.1002/nme.2069

    Article  MathSciNet  MATH  Google Scholar 

  18. Hauret P (2010) Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact. Comput Methods Appl Mech Eng 199(45–48):2941–2957. https://doi.org/10.1016/j.cma.2010.06.004

    Article  MathSciNet  MATH  Google Scholar 

  19. Hilber HM, Hughes TJ, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283–292. https://doi.org/10.1002/eqe.4290050306

    Article  Google Scholar 

  20. Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3–4):235–257. https://doi.org/10.1016/S0045-7825(98)00383-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Kane C, Marsden JE, Ortiz M, West M (2000) Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int J Numer Methods Eng 49(10):1295–1325. https://doi.org/10.1002/1097-0207(20001210)49:10<1295::aid-nme993>3.0.co;2-w

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaufman DM, Pai DK (2012) Geometric numerical integration of inequality constrained, nonsmooth Hamiltonian systems. SIAM J Sci Comput 34(5):A2670–A2703. https://doi.org/10.1137/100800105

    Article  MathSciNet  MATH  Google Scholar 

  23. Khenous HB, Laborde P, Renard Y (2008) Mass redistribution method for finite element contact problems in elastodynamics. Eur J Mech A/Solids 27(5):918–932. https://doi.org/10.1016/j.euromechsol.2008.01.001

    Article  MathSciNet  MATH  Google Scholar 

  24. Krause R, Walloth M (2012) Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme. Appl Numer Math 62(10):1393–1410. https://doi.org/10.1016/j.apnum.2012.06.014

    Article  MathSciNet  MATH  Google Scholar 

  25. Krenk S (2006) Energy conservation in Newmark based time integration algorithms. Comput Methods Appl Mech Eng 195(44–47):6110–6124. https://doi.org/10.1016/j.cma.2005.12.001

    Article  MathSciNet  MATH  Google Scholar 

  26. Laursen TA, Chawla V (1997) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Methods Eng 40(5):863–886. https://doi.org/10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO;2-V

    Article  MathSciNet  MATH  Google Scholar 

  27. Marsden JE (2001) West M (2001) Discrete mechanics and variational integrators. Acta Numer 10:357–514. https://doi.org/10.1017/S096249290100006X

    Article  MathSciNet  MATH  Google Scholar 

  28. Moreau JJ (1999) Numerical aspects of the sweeping process. Comput Methods Appl Mech Eng 177(3–4):329–349. https://doi.org/10.1016/S0045-7825(98)00387-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(7):67–94

    Article  Google Scholar 

  30. Paoli L, Schatzman M (2002a) A numerical scheme for impact problems I: the one-dimensional case. SIAM J Numer Anal 40(2):702–733. https://doi.org/10.1137/S0036142900378728

    Article  MathSciNet  MATH  Google Scholar 

  31. Paoli L, Schatzman M (2002b) A numerical scheme for impact problems II: the multidimensional case. SIAM J Numer Anal 40(2):734–768. https://doi.org/10.1137/S003614290037873X

    Article  MathSciNet  MATH  Google Scholar 

  32. Renard Y (2010) The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems. J Comput Appl Math 234(3):906–923. https://doi.org/10.1016/j.cam.2010.01.058

    Article  MathSciNet  MATH  Google Scholar 

  33. Simo JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. ZAMP Zeitschrift für angewandte Mathematik und Physik 43(5):757–792. https://doi.org/10.1007/BF00913408

    Article  MathSciNet  MATH  Google Scholar 

  34. Simo JC, Tarnow N, Wong KK (1992) Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput Methods Appl Mech Eng 100(1):63–116. https://doi.org/10.1016/0045-7825(92)90115-Z

    Article  MathSciNet  MATH  Google Scholar 

  35. Tkachuk A, Wohlmuth BI, Bischoff M (2013) Hybrid-mixed discretization of elasto-dynamic contact problems using consistent singular mass matrices. Int J Numer Meth Eng 94(5):473–493. https://doi.org/10.1002/nme.4457

    Article  MathSciNet  MATH  Google Scholar 

  36. Wohlmuth B (2011) Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer 20:569–734. https://doi.org/10.1017/S0962492911000079

    Article  MathSciNet  MATH  Google Scholar 

  37. Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3):989–1012. https://doi.org/10.1137/S0036142999350929

    Article  MathSciNet  MATH  Google Scholar 

  38. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin. https://doi.org/10.1007/978-3-540-32609-0

    Book  MATH  Google Scholar 

Download references

Funding

We gratefully acknowledge the French National Association for Research and Technology (ANRT, CIFRE Grant No. 2017/1555). This work was supported by the “Manufacture Française de Pneumatiques Michelin”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Di Stasio.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: a parallel between the contact law and the velocity contact condition of Moreau-Jean

Appendix: a parallel between the contact law and the velocity contact condition of Moreau-Jean

The contact law described by Eqs. (10),  (11) is close from the Moreau–Jean velocity conditions [20, 28]. With a mass contact node, these conditions express as:

$$\begin{aligned}&\text {If }\mathbf {g}_{n+1}>0,&\widetilde{\mathbf {r}}_{n+\frac{3}{2}}=0 \end{aligned}$$
(35)
$$\begin{aligned}&\text {If }\mathbf {g}_{n+1}\leqslant 0,&0 \leqslant \widetilde{\mathbf {r}}_{n+\frac{3}{2}} \perp \dot{\widetilde{\mathbf{u }}}_{n+\frac{3}{2}} \geqslant 0 \end{aligned}$$
(36)

The Eq. (35) describes the free of contact state, and the Eq. (36) describes the active contact. \(\widetilde{\mathbf {r}}_{n+\frac{3}{2}}\), the contact impulse, acts as a Lagrange multiplier. It imposes \(\dot{\widetilde{\mathbf{u }}}_{n+\frac{3}{2}}\), the contact node velocity, if it does not respect the contact conditions:

  • If \(\dot{\widetilde{\mathbf{u }}}_{n+\frac{3}{2}} \leqslant 0\), the beam tends to penetrate into rigid frontier. The dynamic gives a \(\widetilde{\mathbf {r}}_{n+\frac{3}{2}}>0\) to stop the contact node. It compensates both the internal stress of skin and the inertia of contact node. The skin is in compression.

  • If \(\dot{\widetilde{\mathbf{u }}}_{n+\frac{3}{2}} > 0\), the beam tends to leave the rigid frontier. \(\widetilde{\mathbf {r}}_{n+\frac{3}{2}}\) is set to zero because the system already meets the contact conditions. The skin is no more constrained.

The velocity contact law (10), (11) for singular mass matrix follows the same principles as the Moreau–Jean’s condition  (35), (36). But the Moreau–Jean’s condition have access to \(\dot{\widetilde{\mathbf{u }}}_{n+\frac{3}{2}}\) through the dynamic before to set \(\widetilde{\mathbf {r}}_{n+\frac{3}{2}}\). At the release time-step , \(\dot{\widetilde{\mathbf{u }}}_{n+\frac{3}{2}}>0\) and so \(\widetilde{\mathbf {r}}_{n+\frac{3}{2}}\) is directly set to zero. For the velocity contact law, \(\dot{\widetilde{\mathbf{u }}}_{n+\frac{3}{2}}\) is computed once \(\widetilde{\mathbf {r}}_{n+\frac{3}{2}}\) is known. This leads to a release “late” of one time-step: at release, \(\widetilde{\mathbf {r}}_{n+\frac{3}{2}}\leqslant 0\) but already fixed and \(\dot{\widetilde{\mathbf{u }}}_{n+\frac{3}{2}}>0\). This temporary violation on positivity of contact stresses is necessary as no dynamical link exists between \(\widetilde{\mathbf {r}}_{n+\frac{3}{2}}\) and \(\dot{\widetilde{\mathbf{u }}}_{n+\frac{3}{2}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Stasio, J., Dureisseix, D., Georges, G. et al. An explicit time-integrator with singular mass for non-smooth dynamics. Comput Mech 68, 97–112 (2021). https://doi.org/10.1007/s00466-021-02021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02021-5

Keywords

Navigation