Skip to main content
Log in

Evolution of self-organized nanograting from the pre-induced nanocrack-assisted plasma–laser coupling in sapphire

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The period (\(\wedge \)) of nanograting in sapphire varied from 320 to 398 nm with increasing the laser fluence, which is similar to the change trend of period of the near-subwavelength ripples previously observed on the material surface (\(0.4<\wedge / \lambda <1\)) (Huang et al. in ACS Nano 3:4062, 2009). The result shows that the interference of the incident laser with the plasma could take place at the high-excited state of internal modified interface and leads to a spatial modulation of the local energy (fluence) distribution. The initial plasma–laser interference and the subsequent nanocrack-assisted plasma–laser coupling were used to explain the growth of nanograting what we have observed experimentally. Using a finite-difference time-domain method, we simulated the redistribution of laser fluence about the nanocracks, which derived from the pre-induced periodic refractive index changes in the focal volume after the acid etching. The experimental result and theoretical simulation can be in good agreement. In addition, we realized the erasing and rewriting of nanograting by using two beams of orthogonally polarized femtosecond laser pulses. This study can provide new proof for the physical mechanism of laser-induced nanograting and offer a reference for the fabrication of nanodevices in the substrate of sapphire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q.K. Li, J.J. Cao, Y.H. Yu, L. Wang, Y.L. Sun, Q.D. Chen, H.B. Sun, Opt. Lett. 42, 543 (2017)

    Article  ADS  Google Scholar 

  2. A. Halstuch, O. Westreich, N. Sicron, A.A. Ishaaya, Opt. Lasers Eng. 109, 68 (2018)

    Article  Google Scholar 

  3. Y. Xu, J. Zou, X. Lin, W. Wu, W. Li, B. Yang, M. Shi, Appl. Sci. 8, 1842 (2018)

    Article  Google Scholar 

  4. K.S. Kim, D. Jones, E. Bente, J. Girkin, M. Dawson, IEEE 2, 762 (2001)

    Google Scholar 

  5. R.R. Gattass, E. Mazur, Nat. Photon. 2, 219 (2008)

    Article  ADS  Google Scholar 

  6. A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A.K. Kar, R. Osellame, Nat. Photon. 13, 105 (2019)

    Article  ADS  Google Scholar 

  7. Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, G. Lakshminarayana, J. Qiu, Appl. Phys. B 93, 613 (2008)

    Article  ADS  Google Scholar 

  8. M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, B. Poumellec, Appl. Phys. B 122, 66 (2016)

    Article  ADS  Google Scholar 

  9. S. Yang, D. Homa, G. Pickrell, A. Wang, Opt. Lett. 43, 62 (2018)

    Article  ADS  Google Scholar 

  10. R. Moser, N. Ojha, M. Kunzer, U.T. Schwarz, Opt. Express 19, 24738 (2011)

    Article  ADS  Google Scholar 

  11. X. Sun, D. Cui, Y. Hu, D. Chu, G. Chen, J. Yu, J. Zhou, J. Duan, Chin. Opt. Lett. 16, 101402 (2018)

    Article  ADS  Google Scholar 

  12. A. Elgohary, E. Block, J. Squier, M. Koneshloo, R.K. Shaha, C. Frick, J. Oakey, S.A. Aryana, Appl. Opt. 59, 9285 (2020)

    Article  ADS  Google Scholar 

  13. L. Capuano, R. Tiggelaar, J. Berenschot, J. Gardeniers, G. Römer, Opt. Lasers Eng. 133, 106114 (2020)

    Article  Google Scholar 

  14. K. Yin, J. Duan, X. Sun, C. Wang, Z. Luo, Appl. Phys. A 119, 69 (2015)

    Article  ADS  Google Scholar 

  15. D. Chu, K. Yin, X. Dong, Z. Luo, J.A. Duan, AIP Adv. 7, 115224 (2017)

    Article  ADS  Google Scholar 

  16. X.Q. Liu, S.N. Yang, L. Yu, Q.D. Chen, Y.L. Zhang, H.B. Sun, Adv. Funct. Mater. 29, 1900037 (2019)

    Article  Google Scholar 

  17. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  18. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, U. Peschel, J. Laser Appl. 24, 042008 (2012)

    Article  ADS  Google Scholar 

  19. V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, P. Corkum, Phys. Rev. Lett. 96, 057404 (2006)

    Article  ADS  Google Scholar 

  20. S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, S. Nolte, Opt. Lett. 37, 482 (2012)

    Article  ADS  Google Scholar 

  21. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, ACS Nano 3, 4062 (2009)

    Article  Google Scholar 

  22. Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, Y. Cheng, Optica 2, 329 (2015)

    Article  ADS  Google Scholar 

  23. M. Beresna, M. Gecevičius, P.G. Kazansky, T. Gertus, Appl. Phys. Lett. 98, 201101 (2011)

    Article  ADS  Google Scholar 

  24. Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, K. Midorikawa, Opt. Lett. 38, 187 (2013)

    Article  ADS  Google Scholar 

  25. J. Zhang, M. Gecevičius, M. Beresna, P.G. Kazansky, Phys. Rev. Lett. 112, 033901 (2014)

    Article  ADS  Google Scholar 

  26. F. Zhang, Y. Yu, C. Cheng, Y. Dai, H. Zhang, J. Qiu, Appl. Phys. B 117, 53 (2014)

    Article  ADS  Google Scholar 

  27. J. Lu, Y. Dai, Q. Li, Y. Zhang, C. Wang, F. Pang, T. Wang, X. Zeng, Nanoscale 11, 908 (2019)

    Article  Google Scholar 

  28. Y. Wang, S. Wei, M.R. Cicconi, Y. Tsuji, M. Shimizu, Y. Shimotsuma, K. Miura, G.D. Peng, D.R. Neuville, B. Poumellec et al., J. Am. Ceram. Soc. 103, 4286 (2020)

    Article  Google Scholar 

  29. D. Wortmann, J. Gottmann, N. Brandt, H. Horn-Solle, Opt. Express 16, 1517 (2008)

    Article  ADS  Google Scholar 

  30. J. Bai, G. Cheng, X. Long, Y. Wang, W. Zhao, G. Chen, R. Stoian, R. Hui, Opt. Express 20, 15035 (2012)

    Article  ADS  Google Scholar 

  31. H. Fan, M. Ryu, R. Honda, J. Morikawa, Z.Z. Li, L. Wang, J. Maksimovic, S. Juodkazis, Q.D. Chen, H.B. Sun, Nanomaterials 9, 1414 (2019)

    Article  Google Scholar 

  32. G. Eberle, M. Schmidt, F. Pude, K. Wegener, Appl. Surf. Sci. 378, 504 (2016)

    Article  ADS  Google Scholar 

  33. A. Ozkan, A. Malshe, T. Railkar, W. Brown, M. Shirk, P. Molian, Appl. Phys. Lett. 75, 3716 (1999)

    Article  ADS  Google Scholar 

  34. H. Ma, Y. Guo, M. Zhong, R. Li, Appl. Phys. A 89, 707 (2007)

    Article  ADS  Google Scholar 

  35. J. Gottmann, D. Wortmann, M. Hörstmann-Jungemann, Appl. Surf. Sci. 255, 5641 (2009)

    Article  ADS  Google Scholar 

  36. Y. Ren, L. Zhang, C. Romero, J.R.V. de Aldana, F. Chen, Appl. Surf. Sci. 441, 372 (2018)

    Article  ADS  Google Scholar 

  37. F. Zhang, Z. Nie, H. Huang, L. Ma, H. Tang, M. Hao, J. Qiu, Opt. Express 27, 6442 (2019)

    Article  ADS  Google Scholar 

  38. P. Karpinski, V. Shvedov, W. Krolikowski, C. Hnatovsky, J. Appl. Phys. 127, 153104 (2020)

    Article  ADS  Google Scholar 

  39. S. Juodkazis, M. Hiroaki, Appl. Phys. A 93, 857 (2008)

    Article  ADS  Google Scholar 

  40. S. Xu, H. Fan, Z.Z. Li, J.G. Hua, Y.H. Yu, L. Wang, Q.D. Chen, H.B. Sun, Opt. Lett. 46, 536 (2021)

    Article  ADS  Google Scholar 

  41. H. Wang, J. Song, Q. Li, X. Zeng, Y. Dai, J. Phys. D: Appl. Phys. 51, 155101 (2018)

    Article  ADS  Google Scholar 

  42. W. Zhang, Q. Zhai, J. Song, K. Lou, Y. Li, Z. Ou, Q. Zhao, Y. Dai, J. Phys. D: Appl. Phys. 53, 165106 (2020)

    Article  ADS  Google Scholar 

  43. Z.Z. Li, L. Wang, H. Fan, Y.H. Yu, Q.D. Chen, S. Juodkazis, H.B. Sun, Light-Sci. Appl. 9, 41 (2020)

    Article  ADS  Google Scholar 

  44. Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, Y. Cheng, Opt. Lett. 40, 3623 (2015)

    Article  ADS  Google Scholar 

  45. V.B. Gildenburg, I.A. Pavlichenko, Nanomaterials 10, 461 (2020)

    Article  Google Scholar 

  46. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, S. Juodkazis, Nanotechnology 22, 055304 (2010)

    Article  ADS  Google Scholar 

  47. A. Rudenko, J.P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, T.E. Itina, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  48. R. Buividas, S. Rekštytė, M. Malinauskas, S. Juodkazis, Opt. Mater. Express 3, 1674 (2013)

    Article  ADS  Google Scholar 

  49. G. Cheng, Q. Liu, Y. Wang, W. Zhao, G. Chen, Chin. Opt. Lett. 4, 111 (2006)

    ADS  Google Scholar 

  50. R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, P. Corkum, Opt. Lett. 32, 2888 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 11774220 and 91750108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Ma or Ye Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Q., Ma, H., Lin, X. et al. Evolution of self-organized nanograting from the pre-induced nanocrack-assisted plasma–laser coupling in sapphire. Appl. Phys. B 127, 74 (2021). https://doi.org/10.1007/s00340-021-07625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07625-6

Navigation