Skip to main content
Log in

Carbon dots prepared by thermal reactions and selective detections of copper and mercury ions in visible spectrum

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon dots (CDots) are characterized by their optical properties including strong absorptions, bright fluorescence emissions, and electron acceptor and donor behaviors in the visible spectrum. In this study, aconitic acid and oligomeric polyethyleneimine were used as precursors to prepare PEI/AA-CDots by vigorous microwave-assisted thermal carbonization. The as-prepared CDots exhibit excitation wavelength-dependent fluorescence with a quantum yield of 44.2% at the excitation wavelength of 380 nm. In addition, the fluorescence in the visible spectrum can be selectively and efficiently quenched by Cu2+ or Hg2+ ions via electron transitions due to the electron donor behaviors of the as-prepared CDots. The detection limits of Cu2+ and Hg2+ ions are 70 and 84 nM, respectively. The quenched fluorescence can be recovered by introducing aspartic acid or L-cysteine into the PEI/AA-CDots-Cu2+ or the PEI/AA-CDots-Hg2+ systems. Furthermore, the as-prepared PEI/AA-CDots can be successfully applied for detecting Cu2+ and Hg2+ ions in real water and can serve as a potential candidate as a probe for detecting these metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006)

    Article  Google Scholar 

  2. Y.P. Sun, Fluorescent carbon nanoparticles. U.S. Patent 7,829,772 (2010)

  3. L. Cao, M.J. Meziani, S. Sahu, Y.P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171–180 (2013)

    Article  Google Scholar 

  4. G.E. LeCroy, S.T. Yang, F. Yang, Y. Liu, K.A.S. Fernando, C.E. Bunker, Y. Hu, P.G. Luo, Y.P. Sun, Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord. Chem. Rev. 320, 66–81 (2016)

    Article  Google Scholar 

  5. H. Li, X. Yan, D.S. Kong, R. Jin, C. Sun, D. Du, Y. Lin, G. Lu, Recent advances in carbon dots for bioimaging applications. Nanoscale Horiz. 5, 218–234 (2020)

    Article  ADS  Google Scholar 

  6. D. Wang, X. Mei, S. Wang, J. Li, C. Dong, A one-pot synthesis of fluorescent N, P-codoped carbon dots for vitamin B12 determination and bioimaging application. New J. Chem. 45, 3508–3514 (2021)

    Article  Google Scholar 

  7. N. Dhenadhayalan, K.C. Lin, T.A. Saleh, Recent advances in functionalized carbon dots toward the design of efficient materials for sensing and catalysis applications. Small 16, 1905767 (2020)

    Article  Google Scholar 

  8. X. Yue, Z. Zhou, Y. Wu, M. Jie, Y. Li, H. Guo, Y. Bai, A green carbon dots-based fluorescent sensor for selective and visual detection of nitrite triggered by the nitrite-thiol reaction. New J. Chem. 44, 8503–8511 (2020)

    Article  Google Scholar 

  9. Z. Zhang, G. Yi, P. Li, X. Zhang, H. Fan, Y. Zhang, X. Wang, C. Zhang, A minireview on doped carbon dots for photocatalytic and electrocatalytic applications. Nanoscale 12, 13899–13906 (2020)

    Article  Google Scholar 

  10. Z. Zhu, P. Yang, X. Li, M. Luo, W. Zhang, M. Chen, Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis. Spectrochim. Acta. Part A 227, 117659 (2020)

    Article  Google Scholar 

  11. T. Feng, S. Tao, D. Yue, Q. Zeng, W. Chen, B. Yang, Recent advances in energy conversion applications of carbon dots: from optoelectronic devices to electrocatalysis. Small 16, 2001295 (2020)

    Article  Google Scholar 

  12. E.A. Stepanidenko, E.V. Ushakova, A.V. Fedorov, A.L. Rogach, Applications of carbon dots in optoelectronics. Nanomaterials 11, 364 (2021)

    Article  Google Scholar 

  13. F. Zhao, J. Qian, F. Quan, C. Wu, Y. Zheng, L. Zhou, Aconitic acid derived carbon dots as recyclable “on–off–on” fluorescent nanoprobes for sensitive detection of mercury(II) ions, cysteine and cellular imaging. RSC Adv. 7, 44178–44185 (2017)

    Article  ADS  Google Scholar 

  14. S. Dinç, M. Kara, M.D. Kars, F. Aykül, H. Çiçekci, M. Akkuş, Biocompatible yogurt carbon dots: evaluation of utilization for medical applications. Appl. Phys. A 123, 572 (2017)

    Article  ADS  Google Scholar 

  15. Y. Park, Y. Kim, H. Chang, S. Won, H. Kim, W. Kwon, Biocompatible nitrogen-doped carbon dots: synthesis, characterization, and application. J. Mater. Chem. B 8, 8935–8951 (2020)

    Article  Google Scholar 

  16. H. Eskalen, Influence of carbon quantum dots on eletro-optical performance of nematic liquid crystal. Appl. Phys. A 126, 708 (2020)

    Article  Google Scholar 

  17. R. Wang, K.-Q. Lu, Z.-R. Tang, Y.-J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 5, 3717–3734 (2017)

    Article  Google Scholar 

  18. S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)

    Article  Google Scholar 

  19. A. Verhagen, A. Kelarakis, Carbon dots for forensic applications: a critical review. Nanomaterials 10, 1535 (2020)

    Article  Google Scholar 

  20. M.J. Molaei, Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Anal. Methods 12, 1266–1287 (2020)

    Article  Google Scholar 

  21. G.E. LeCroy, S.K. Sonkar, F. Yang, L.M. Veca, P. Wang, K.N.I.I. Tackett, J.J. Yu, E. Vasile, H. Qian, Y. Liu, P. Luo, Y.-P. Sun, Toward structurally defined carbon dots as ultracompact fluorescent probes. ACS Nano 8, 4522–4529 (2014)

    Article  Google Scholar 

  22. C. Zhang, M. Liu, T. Li, S. Liu, Q. Chen, J. Zhang, K. Zhang, One-pot hydrothermal synthesis of dual-emission fluorescent carbon dots for hypochlorous acid detection. Dyes Pigments 180, 108507 (2020)

    Article  Google Scholar 

  23. T.N.J.I. Edison, R. Atchudan, N. Karthik, D. Xiong, Y.R. Lee, Facile hydrothermal synthesis of nitrogen rich blue fluorescent carbon dots for cell bio-imaging of Candida Albicans. Process Biochem. 88, 113–119 (2020)

    Article  Google Scholar 

  24. J. Xu, L. Dai, C. Zhang, Y. Gui, L. Yuan, Y. Lei, B. Fan, Ionic liquid-aided hydrothermal treatment of lignocellulose for the synergistic outputs of carbon dots and enhanced enzymatic hydrolysis. Bioresour. Technol. 305, 123043 (2020)

    Article  Google Scholar 

  25. K. Qin, D. Zhang, Y. Ding, X. Zheng, Y. Xiang, J. Hua, Q. Zhang, X. Ji, B. Li, Y. Wei, Applications of hydrothermal synthesis of escherichia coli derived carbon dots in in Vitro and in Vivo imaging and p-nitrophenol detection. Analyst 145, 177–183 (2020)

    Article  ADS  Google Scholar 

  26. P. Brachi, Synthesis of carbon dots (CDs) through the fluidized bed thermal treatment of residual biomass assisted by γ-alumina. Appl. Catal. B Environ. 263, 118361 (2020)

    Article  Google Scholar 

  27. P.D. Khavlyuk, E.A. Stepanidenko, D.P. Bondarenko, D.V. Danilov, A.V. Koroleva, A.V. Baranov, V.G. Maslov, P. Kasak, A.V. Fedorov, E.V. Ushakova, A.L. Rogach, The influence of thermal treatment conditions (solvothermal versus microwave) and solvent polarity on the morphology and emission of phloroglucinol-based nitrogen-doped carbon dots. Nanoscale 13, 3070–3078 (2021)

    Article  Google Scholar 

  28. G. Sayan, D. Poushali, I. Ella, H. Elad, G. Aharon, M. Shlomo, Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels. ACS Appl. Mater. Inter. 46, 51940–51951 (2020)

    Google Scholar 

  29. D. Qu, Z. Sun, The formation mechanism and fluorophores of carbon dots synthesized via a bottom-up route. Mater. Chem. Front. 4, 400–420 (2020)

    Article  Google Scholar 

  30. M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134, 747–750 (2012)

    Article  Google Scholar 

  31. L. Ge, N. Pan, J. Jin, P. Wang, G.E. LeCroy, W. Liang, L. Yang, L.R. Teisl, Y. Tang, Y.P. Sun, Systematic comparison of carbon dots from different preparations: consistent optical properties and photoinduced redox characteristics in visible spectrum and structural and mechanistic implications. J. Phys. Chem. C 12, 21667–21676 (2018)

    Article  Google Scholar 

  32. H.A. Nguyen, I. Srivastava, D. Pan, M. Gruebele, Unraveling the fluorescence mechanism of carbon dots with sub-single-particle resolution. ACS Nano 14, 6127–6137 (2020)

    Article  Google Scholar 

  33. M. Fu, F. Ehrat, Y. Wang, K.Z. Milowska, C. Reckmeier, A.L. Rogach, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 15, 6030–6035 (2015)

    Article  ADS  Google Scholar 

  34. Y. Song, S. Zhu, S. Zhang, Y. Fu, L. Wang, X. Zhao, B. Yang, Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 4, 5976–5984 (2015)

    Article  Google Scholar 

  35. Q. Dan, Z. Sun, The formation mechanism and fluorophores of carbon dots synthesized via a bottom-up. Mater. Chem. Front. 4, 400–420 (2020)

    Article  Google Scholar 

  36. L. Shi, J.H. Yang, H.B. Zeng, Y.M. Chen, S.C. Yang, C. Wu, H. Zeng, O. Yoshihito, Q. Zhang, Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 8, 14374–14378 (2016)

    Article  ADS  Google Scholar 

  37. K. Jiang, Y. Wang, Z. Li, H. Lin, Afterglow of carbon dots: mechanism, strategy and applications. Mater. Chem. Front. 4, 386–399 (2020)

    Article  Google Scholar 

  38. F. Ehrat, S. Bhattacharyya, J. Schneider, A. Löf, R. Wyrwich, A.L. Rogach, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Tracking the source of carbon dot photoluminescence: aromatic domains versus molecular fluorophores. Nano Lett. 17, 7710–7716 (2017)

    Article  ADS  Google Scholar 

  39. U.S. Enviromental Protetcion Agency. Health effects of overexposure to the Sun. Air and radiation, EPA 430-F-10-026 (2021). https://www.epa.gov/sites/production/files/documents/healtheffects_1.pdf

  40. D. Li, J. Huang, R. Li, P. Chen, D. Chen, M. Cai, H. Liu, Y. Feng, W. Lv, G. Liu, Synthesis of a carbon dots modified g-C3N4/SnO2 Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation. J. Hazard. Mater. 401, 123257 (2021)

    Article  Google Scholar 

  41. U.S. Enviromental Protetcion Agency. National primary drinking water regulations. Ground water and drinking water, EPA 916-F-09-004 (2009). https://www.epa.gov/sites/production/files/2016-06/documents/npwdr_complete_table.pdf

  42. W. Liang, E.B. Christopher, Y.P. Sun, Carbon dots: zero-dimensional carbon allotrope with unique photoinduced redox characteristics. ACS Omega 5, 965–971 (2020)

    Article  Google Scholar 

  43. H.R.H. Ali, A.I. Hassan, Y.F. Hassan, M.M. EI-Wekil, Development of dual function polyamine-functionalized carbon dots derived from one step green synthesis for quantitation of Cu2+ and S2 ions in complicated matrices with high selectivity. Anal. Bioanal. Chem. 412, 1353–1363 (2020)

    Article  Google Scholar 

  44. M. Pajewska-Szmyt, B. Buszewki, R. Gadzała-Kopciuch, Carbon dots as rapid assays for detection of mercury (II) ions based on turn-off mode and breast milk. Spectrochim. Acta A 236, 118320 (2020)

    Article  Google Scholar 

  45. K. Patir, S.K. Gogoi, Nitrogen-doped carbon dots as fluoresence on–off–on sensor for parallel detection of copper (II) and mercury (II) ions in solutions as well as in filter paper-based. Nanoscale Adv. 1, 591–601 (2019)

    Article  ADS  Google Scholar 

  46. X. Ren, W. Liang, P. Wang, C.E. Bunker, M. Coleman, L.R. Teisl, L. Cao, Y.-P. Sun, A new approach in functionalization of carbon nanoparticles for optoelectronically relevant carbon dots and beyond. Carbon 141, 553–560 (2019)

    Article  Google Scholar 

  47. I.B. Berlman, Handbook of Fluoresence Spectra of Aromatic Molecules, 2nd edn. (Academic Press, 1971).

    Google Scholar 

  48. S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Edit 125, 4045–4049 (2013)

    Article  Google Scholar 

  49. Y. Sun, S. Liu, L. Sun, S. Wu, G. Hu, X. Pang, A.T. Smith, C. Hu, S. Zeng, W. Wang, Y. Liu, M. Zheng, Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nat. Commun. 11, 5591 (2020)

    Article  ADS  Google Scholar 

  50. G. Qiao, L. Liu, X. Hao, J. Zheng, W. Liu, J. Gao, C.C. Zhang, Q. Wang, Signal transduction from small particles: sulfur nanodots featuring mercury sensing, cell entry mechanism and in vitro tracking performance. Chem. Eng. J. 382, 122907 (2020)

    Article  Google Scholar 

  51. F. Yang, G.E. LeCroy, P. Wang, W. Liang, J. Chen, K.A.S. Fernando, C.E. Bunker, H. Qian, Y.P. Sun, Functionalization of carbon nanoparticles and defunctionalization-toward structural and mechanistic elucidation of carbon “Quantum” dots. J. Phys. Chem. C 120, 25604–25611 (2016)

    Article  Google Scholar 

  52. Y. Hu, M.M. Al Awak, F. Yang, S. Yan, Q. Xiong, P. Wang, Y. Tang, L. Yang, G.E. LeCroy, X. Hou, C.E. Bunker, H. Qian, Y.-P. Sun, Photoexcited state properties of carbon dots from thermally induced functionalization of carbon nanoparticles. J. Mater. Chem. C 4, 10554–10561 (2016)

    Article  Google Scholar 

  53. S. Liu, J. Tian, L. Wang, H. Li, Y. Zhang, X. Sun, Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules 43, 10078–10083 (2021)

    Article  ADS  Google Scholar 

  54. T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, X. Weng, Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III). Nanoscale 5, 8015–8021 (2013)

    Article  ADS  Google Scholar 

  55. S. Fleutot, J.C. Dupin, G. Renaudin, H. Martinez, Intercalation and grafting of benzene derivatives into zinc–aluminum and copper–chromium layered double hydroxide hosts: an XPS monitoring study. Phys. Chem. Chem. Phys. 13, 17564–17578 (2011)

    Article  Google Scholar 

  56. M. Sevilla, A.B. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 15, 4195–4203 (2009)

    Article  Google Scholar 

  57. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, B.L. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers. Nano. Lett. 2, 844–849 (2012)

    Article  ADS  Google Scholar 

  58. D.I.A. Rabe, M.M.A. Awak, F. Yang, P.A. Okonjo, X. Dong, L.R. Teisl, P. Wang, Y. Tang, N. Pan, Y.-P. Sun, L. Yang, The dominant role of surface functionalization in carbon dots’ photo-activated antibacterial activity. Int. J. Nanomed. 14, 2655–2665 (2019)

    Article  Google Scholar 

  59. F. Yang, X. Ren, G.E. LeCroy, J. Song, P. Wang, L. Beckerle, C.E. Bunker, Q. Xiong, Y.P. Sun, Zero-dimensional carbon allotropes—carbon nanoparticles versus fullerenes in functionalization by electronic polymers for different optical and redox properties. ACS Omega 3, 5685–5691 (2018)

    Article  Google Scholar 

  60. Y. Chen, Z. Rosenzweig, Luminescent CdS quantum dots as selective ion probes. Anal. Chem. 74, 5132–5138 (2002)

    Article  Google Scholar 

  61. F. Wang, Z. Gu, W. Lei, W. Wang, X. Xia, Q. Hao, Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions. Sensor Actuat. B Chem. 190, 516–522 (2014)

    Article  Google Scholar 

  62. G. Hu, L. Ge, Y. Li, M. Mukhtar, B. Shen, D. Yang, Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. J. Colloid Interf. Sci. 579, 96–108 (2020)

    Article  ADS  Google Scholar 

  63. L. Sun, D. Hao, W. Shen, Z. Qian, C. Zhu, Highly sensitive fluorescent sensor for copper (II) based on amplified fluorescence quenching of a water-soluble NIR emitting conjugated polymer. Microchim. Acta 177, 357–364 (2012)

    Article  Google Scholar 

  64. J.M. Liu, L.P. Lin, X.X. Wang, S.Q. Lin, W.L. Cai, L.H. Zhang, Z.Y. Zheng, Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Chem. Eng. J. 137, 2637–2642 (2012)

    Google Scholar 

Download references

Acknowledgments

Gansu Province Science Foundation for Youths (20JR10RA104) and Gansu Province Science Foundation for Youth Teachers (2020B-092) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Ge.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 915 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, L., Hu, G., Zhao, F. et al. Carbon dots prepared by thermal reactions and selective detections of copper and mercury ions in visible spectrum. Appl. Phys. A 127, 388 (2021). https://doi.org/10.1007/s00339-021-04545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04545-2

Keywords

Navigation