Skip to main content
Log in

Modeling of Powder Production During Centrifugal Atomization

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Centrifugal atomizer has been widely used to produce metal powders, slag granules through dry slag granulation process. In this process, liquid is poured at the center of the spinning disc, which disintegrates to form droplets, and becomes solid granules/powders on cooling. In this study, a numerical simulation has been carried out to estimate powder size considering phase change into the model, and the obtained results are validated with experimental measurements. Different mechanisms of powder production viz., direct powder formation, ligament to powder formation, and film to powder formation have been captured at various liquid flow rates and angular disc speed. The effect of composition of the model liquid slag and its properties like viscosity, density, surface tension, etc. has been studied using this mathematical model. Further, the effect of superheat on solidification was also considered. Finally, powder size distribution has been correlated with properties of the slag, superheat of the liquid, and process variables.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

h T :

total film thickness (m)

h s :

solid film thickness (m)

d drop :

droplet diameter (m)

R :

radius of the disc (m)

Q :

mass flow rate (kg/s)

ω :

angular velocity of the disc (RPM)

t :

time (s)

Re :

Reynolds number (−)

We :

Weber number (−)

Oh :

Ohnesorge number (−)

T in :

melt pouring temperature (K)

T :

ambient temperature (K)

T disk :

disc temperature (K)

References

  1. Walton WH, Prewett WC (1949) The prediction of sprays and mists of uniform drop size by means of spinning disk type sprayers. Proc Phys Soc 62:341–350

    Article  Google Scholar 

  2. Senuma Y, Hilborn JG (2002) High speed imaging of drop formation from low viscosity liquids and polymer melts in spinning disk atomization. Polym Eng Sci 42:969–982. https://doi.org/10.1002/pen.11006

    Article  CAS  Google Scholar 

  3. Wang D, Ling L, Peng H, Cui Z, Yang X (2017) High-temperature analogy experimental investigation on dry granulating characteristic of rotating disk for waste heat utilization of molten slag. Appl Therm Eng 125:846–855. https://doi.org/10.1016/j.applthermaleng.2017.07.075

    Article  Google Scholar 

  4. Tan Y, Zhu X, He X, Ding B, Wang H, Liao Q, Li H (2018) Granulation characteristics of molten blast furnace slag by hybrid centrifugal-air blast technique. Powder Tech 323:176–185. https://doi.org/10.1016/j.powtec.2017.09.040

    Article  CAS  Google Scholar 

  5. Xie J, Zhao Y, Dunkley J (2004) Effects of processing conditions on powder particle size and morphology in centrifugal atomization of tin. Powder Metall 47:168–172. https://doi.org/10.1179/003258904225015482

    Article  CAS  Google Scholar 

  6. Sungkhaphaitoon P, Plookphol T, Wisutmethangoon S (2012) Design and development of a centrifugal atomizer for producing zinc metal powder. Int. J. Appl. Phys. Math. 2:77–82. https://doi.org/10.7763/IJAPM.2012.V2.58

    Article  CAS  Google Scholar 

  7. Tian L, Anderson I, Riedemann T, Russell A (2017) Production of fine calcium powders by centrifugal atomization with rotating quench bath. Powder Tech 308:84–93. https://doi.org/10.1016/j.powtec.2016.12.011

    Article  CAS  Google Scholar 

  8. Frost AR (1981) Rotary atomization in the ligament formation mode. J Agric Eng Res 26:63–78

    Article  Google Scholar 

  9. Plookphol T, Wisutmethangoon S, Gonsrang S (2011) Influence of process parameters on SAC305 lead free solder powder produced by centrifugal atomization. Powder Tech 214:506–512. https://doi.org/10.1016/j.powtec.2011.09.015

    Article  CAS  Google Scholar 

  10. Ahmed M, Youssef MS (2014) Influence of spinning cup and disk atomizer configurations on droplet size and velocity characteristics. Chem Eng Sci 18:107–149. https://doi.org/10.1016/j.ces.2013.12.004

    Article  CAS  Google Scholar 

  11. Pan Y, Witt PJ, Xie D (2010) CFD simulation of free surface flow and heat transfer of liquid slag on a spinning disc for a novel dry slag granulation process. Prog. Comput Fluid Dynamics 10(5/6):292–299

    Article  Google Scholar 

  12. Dhiri D, Prasad K, Shukla AK, Sarkar S, Renganathan T, Pushpavanam S, Marutiram K (2016) Experimental study of rotating dry slag granulation unit: operating regimes, particle size analysis and scale up. Appl Therm Eng 107:898–906. https://doi.org/10.1016/j.applthermaleng.2016.07.049

    Article  CAS  Google Scholar 

  13. Wang D, Ling L, Peng H (2015) Simulation of ligament mode breakup of molten slag by spinning disk in the dry granulation process. Appl Therm Eng 84:437–447. https://doi.org/10.1016/j.applthermaleng.2015.03.003

    Article  Google Scholar 

  14. Wang D, Ling X, Peng H, Cui Z, Yang X (2016) Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge. Ind and Eng Chem Res 55:9267–9275. https://doi.org/10.1021/acs.iecr.6b01428

    Article  CAS  Google Scholar 

  15. Mantripragada VT, Sarkar S (2017) Prediction of drop size from liquid film thickness during rotary disc atomization process. Chem Eng Sci 158:227–233. https://doi.org/10.1016/j.ces.2016.10.027

    Article  CAS  Google Scholar 

  16. Soma T, Katayama T, Tanimoto J, Saito Y, Matsushita Y, Aoki H, Nakai D, Kitamura G, Miura M, Asakawa T, Daikoku M, Haneda T, Hatayama Y, Shirota M, Inamura T (2015) Liquid film flow on a high speed rotary bell-cup atomizer. Inter J Multiphase Flow 70:96–103. https://doi.org/10.1016/j.ijmultiphaseflow.2014.11.013

    Article  CAS  Google Scholar 

  17. Zhu X, Ding B, Wang H, He XY, Tan Y, Liao Q (2018) Numerical study on solidification behaviors of a molten slag droplet in the centrifugal granulation and heat recovery system. Appl Ther Eng 130:1033–1043. https://doi.org/10.1016/j.applthermaleng.2017.11.080

    Article  Google Scholar 

  18. Purwanto H, Mizuochi T, Akiyama T (2005) Prediction of granulated slag properties produced from spinning disc atomizer by mathematical model. Mater Trans 46:1324–1330. https://doi.org/10.2320/matertrans.46.1324

    Article  CAS  Google Scholar 

  19. Purwanto H, Akiyama T (2005) Mathematical modeling of molten slag granulation using a spinning disk atomizer (SDA). 46th Conference on Simulation and Modeling (SIMS 2005), Trondheim, Norway: 253–258.

  20. Chang Q, Li X, Ni H, Zhu W, Pan C, Hu S (2015) Modeling on dry centrifugal granulation process of molten blast furnace slag. ISIJ Int 55:1361–1366. https://doi.org/10.2355/isijinternational.55.1361

    Article  CAS  Google Scholar 

  21. Ranz WE, Marshall WR (1952) Evaporation from drops. Part I Chem Eng Prog 48:141–146

    CAS  Google Scholar 

  22. Ranz WE, Marshall WR (1952) Evaporation from drops. Part II Chem Eng Prog 48:173–180

    CAS  Google Scholar 

  23. Ding B, Zhu X, Wang H, He XY, Tan Y (2017) Numerical investigation on phase change cooling and crystallization of a molten blast furnace slag droplet. Inter J Heat Mass Trans 118:471–479. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.108

    Article  Google Scholar 

  24. Ding B, Wang H, Zhu X, He XY, Liao Q, Tan Y (2016) Crystallization behaviours of Blast Furnace (BF) slag in a phase change cooling process. Energy Fuels 30:3331–3339. https://doi.org/10.1021/acs.energyfuels.5b03000

    Article  CAS  Google Scholar 

  25. Kumar P, Sarkar S (2019) Experimental investigation of liquid disintegration on slotted disc in centrifugal atomization process. Chem Eng Research and Design 145:76–84. https://doi.org/10.1016/j.cherd.2019.02.039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding received from the Department of Science and Technology (file No. CRG/2018/000908), India. The authors are also thankful to the High Performance Computing Environment (HPCE) at the P.G.Senapathy centre for computing resources, Indian Institute of Technology Madras for facilitating the Virgo super cluster to carry out the simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabita Sarkar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Sharif Jahanshahi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantripragada, V.T., Kumar, K., Kumar, P. et al. Modeling of Powder Production During Centrifugal Atomization. J. Sustain. Metall. 7, 620–629 (2021). https://doi.org/10.1007/s40831-021-00370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00370-2

Keywords

Navigation