Skip to main content
Log in

Laser Ablation Inductive Coupled Plasma Mass Spectroscopy (LA-ICP-MS) Analysis on Lead-Acid Battery System: Development of Evaluation Method of Sub-ppm Metal Impurity Elements

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In Lead-acid batteries, there are significant efforts to enhance battery performance, mainly by reducing metal impurities that negatively affect battery performance. Currently implemented impurity analysis requires significant time and effort. Wet chemical preparation method is not only hazardous due to the extensive use of acids, but generates environmental pollutants and hazardous waste which require more costly and comprehensive disposal processes. In industry, it is desirable to reduce sample processing and analysis time to improve productivity and efficiency. Laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) is a technique that has the potential to overcome the above issues. In this work, we demonstrate an analysis of impurities (Cu, As, Cd, Co, Se, and Te) in lead-based samples at the ppm/sub-ppm level by the LA-ICP-MS method and verify with matrix matching an accurate quantification of the impurity concentrations of interest. The resulting data, which determines to reduce analysis time more than 50% due to simple preparation step while not as accurate concentration as traditional ICP-MS with at least two times increment of relative standard deviation, provides a reasonable level of accuracy and precision in a substantially quick, cost-effective method that is viable for a high throughput industrial setting.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gad-Allah AG, Salih SA, Mokhtar AA, El-Rahman HAA (2013) Effect of As, Cu and Sb impurities on performance of Pb-Ca-Sn grids of lead-acid batteries. Mater Werkst 44:832–838. https://doi.org/10.1002/mawe.201300071

    Article  Google Scholar 

  2. Nakamura K, Shiomi M, Takahashi K, Tsubota M (1996) Failure modes of valve-regulated lead/acid batteries. J Power Sources 59:153–157. https://doi.org/10.1016/0378-7753(95)02317-8

    Article  CAS  Google Scholar 

  3. Ronglong C, Shousong W (1993) Lead alloys for maintenance-free and sealed lead/acid batteries. J Power Sources 46:327–333. https://doi.org/10.1016/0378-7753(93)90029-Z

    Article  Google Scholar 

  4. Kwiecien M, Schröer P, Kuipers M, Sauer DU (2017) Current research topics for lead–acid batteries. In: Garche J, Karden E, Moseley PT, Rand DAJ (eds) Lead-acid batteries for future automobiles. Elsevier, pp 133–146

  5. Clough TJ, Wertz JA (2001) Life and capacity improvements in lead acid batteries through metal control additives. In: Sixteenth annual battery conference on applications and advances. Proceedings of the conference, pp 87–92

  6. David Prengaman R (1993) Metallurgy of recycled lead for recombinant batteries. J Power Sources 42:25–33. https://doi.org/10.1016/0378-7753(93)80134-B

    Article  Google Scholar 

  7. Buldini PL, Laghi A, Saxena P et al (1989) The influence of traces of impurities in the lead-acid battery electrolytes. In: Conference Proceedings. Eleventh international telecommunications energy conference, vol 2, pp 17.1/1–17.1/7

  8. Kubaszewski Ł, Zioła-Frankowska A, Frankowski M et al (2014) Atomic absorption spectrometry analysis of trace elements in degenerated intervertebral disc tissue. Med Sci Monit Int Med J Exp Clin Res 20:2157–2164. https://doi.org/10.12659/MSM.890654

    Article  Google Scholar 

  9. Palisoc ST, Bentulan JMO, Natividad MT (2019) Determination of trace heavy metals in canned food using Graphene/AuNPs/[Ru(NH3)6]3+/Nafion modified glassy carbon electrodes. J Food Meas Charact 13:169–176. https://doi.org/10.1007/s11694-018-9930-1

    Article  Google Scholar 

  10. Hong YS, Choi JY, Nho EY et al (2019) Determination of macro, micro and trace elements in citrus fruits by inductively coupled plasma–optical emission spectrometry (ICP-OES), ICP–mass spectrometry and direct mercury analyzer. J Sci Food Agric 99:1870–1879. https://doi.org/10.1002/jsfa.9382

    Article  CAS  Google Scholar 

  11. Bussan D, Harris A, Douvris C (2019) Monitoring of selected trace elements in sediments of heavily industrialized areas in Calcasieu Parish, Louisiana, United States by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Microchem J 144:51–55. https://doi.org/10.1016/j.microc.2018.08.053

    Article  CAS  Google Scholar 

  12. Solovyev N, Ala A, Schilsky M et al (2019) Biomedical copper speciation in relation to Wilson’s disease using strong anion exchange chromatography coupled to triple quadrupole inductively coupled plasma mass spectrometry. Anal Chim Acta. https://doi.org/10.1016/j.aca.2019.11.033

    Article  Google Scholar 

  13. Arı B, Can SZ, Bakırdere S (2019) Traceable and accurate quantification of iron in seawater using isotope dilution calibration strategies by triple quadrupole ICP-MS/MS: characterization measurements of iron in a candidate seawater CRM. Talanta. https://doi.org/10.1016/j.talanta.2019.120503

    Article  Google Scholar 

  14. Lorenc W, Markiewicz B, Kruszka D et al (2019) Study on speciation of As, Cr, and Sb in bottled flavored drinking water samples using advanced analytical techniques IEC/SEC-HPLC/ICP-DRC-MS and ESI-MS/MS. Molecules 24:668. https://doi.org/10.3390/molecules24040668

    Article  CAS  Google Scholar 

  15. Kinoshita M, Fuyuto T, Akatsuka H (2019) Measurement of vibrational and rotational temperature in spark-discharge plasma by optical emission spectroscopy: change in thermal equilibrium characteristics of plasma under air flow. Int J Engine Res 20:746–757. https://doi.org/10.1177/1468087418791684

    Article  CAS  Google Scholar 

  16. Peng X, Guo X, Ge F, Wang Z (2019) Battery-operated portable high-throughput solution cathode glow discharge optical emission spectrometry for environmental metal detection. J Anal At Spectrom 34:394–400. https://doi.org/10.1039/C8JA00369F

    Article  CAS  Google Scholar 

  17. Zhang J, Zhou T, Tang Y et al (2018) Rapid and quantitative analysis of impurities in silicon powders by glow discharge mass spectrometry. Anal Bioanal Chem 410:7195–7201. https://doi.org/10.1007/s00216-018-1324-z

    Article  CAS  Google Scholar 

  18. Stehrer T, Heitz J, Pedarnig JD et al (2010) LA-ICP-MS analysis of waste polymer materials. Anal Bioanal Chem 398:415–424. https://doi.org/10.1007/s00216-010-3963-6

    Article  CAS  Google Scholar 

  19. Resano M, García-Ruiz E, Vanhaecke F (2005) Laser ablation–inductively coupled plasma–dynamic reaction cell–mass spectrometry for the multi-element analysis of polymers. Spectrochim Acta Part B At Spectrosc 60:1472–1481. https://doi.org/10.1016/j.sab.2005.09.006

    Article  CAS  Google Scholar 

  20. East Penn Manufacturing | Sustainability in design and manufacturing. In: East Penn Manuf. https://www.eastpennmanufacturing.com/about/sustainability/

  21. Hydrochloric acid 339253. In: 7647-01-0. https://www.sigmaaldrich.com/catalog/product/sigald/339253

  22. Nitric acid 695041. In: 7697-37-2. https://www.sigmaaldrich.com/catalog/product/sial/695041

  23. Somenath M, Roman B (2014) Sample preparation: an analytical perspective. In: Somenath M (ed) Sample preparation techniques in analytical chemistry, Wiley. https://doi.org/10.1002/sepspec.462education

  24. Wilschefski S, Baxter M (2019) Inductively coupled plasma mass spectrometry: introduction to analytical aspects. Clin Biochem Rev 40:115–133. https://doi.org/10.33176/AACB-19-00024

    Article  Google Scholar 

  25. Liu Y, Hu Z, Li M, Gao S (2013) Applications of LA-ICP-MS in the elemental analyses of geological samples. Chin Sci Bull 58:3863–3878. https://doi.org/10.1007/s11434-013-5901-4

    Article  CAS  Google Scholar 

  26. Sussulini A, Becker JS, Becker JS (2017) Laser ablation ICP-MS: application in biomedical research. Mass Spectrom Rev 36:47–57. https://doi.org/10.1002/mas.21481

    Article  CAS  Google Scholar 

  27. Salit ML, Turk GC (2005) Traceability of single-element calibration solutions. Anal Chem 77:136 A-141 A. https://doi.org/10.1021/ac053354n

    Article  CAS  Google Scholar 

  28. Hibbert DB (2006) Metrological traceability: I make it 42; you make it 42; but is it the same 42? Accredit Qual Assur 11:543–549. https://doi.org/10.1007/s00769-006-0177-x

    Article  CAS  Google Scholar 

  29. Imai H (2013) Expanding needs for metrological traceability and measurement uncertainty. Measurement 46:2942–2945. https://doi.org/10.1016/j.measurement.2013.04.046

    Article  Google Scholar 

  30. Raimondo T, Payne J, Wade B et al (2017) Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet. Contrib Mineral Petrol 172:17. https://doi.org/10.1007/s00410-017-1339-z

    Article  CAS  Google Scholar 

  31. Russo RE, Mao X, Liu H et al (2002) Laser ablation in analytical chemistry—a review. Talanta 57:425–451. https://doi.org/10.1016/S0039-9140(02)00053-X

    Article  CAS  Google Scholar 

  32. Kroll WJ (1945) Melting and evaporating metals in a vacuum. Trans Electrochem Soc 87:571–587. https://doi.org/10.1149/1.3071666

    Article  Google Scholar 

  33. MacDougall D, Crummett WB et al (1980) Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal Chem 52:2242–2249. https://doi.org/10.1021/ac50064a004

    Article  CAS  Google Scholar 

  34. Nič M, Jirát J, Košata B et al (2009) Limit of detection in analysis. In: IUPAC Compendium of Chemical Terminology, 2.1.0. IUPAC, Research Triangle Park, NC

  35. Long GL, Winefordner JD (1983) Limit of detection a closer look at the IUPAC definition. Anal Chem 55:712A–724A. https://doi.org/10.1021/ac00258a724

    Article  CAS  Google Scholar 

  36. Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J Anal Spectrom 24:209–214. https://doi.org/10.1039/B805995K

    Article  Google Scholar 

  37. Lehmann EL, Arruda MAZ (2019) Minimalist strategies applied to analysis of forensic samples using elemental and molecular analytical techniques—a review. Anal Chim Acta 1063:9–17. https://doi.org/10.1016/j.aca.2019.02.003

    Article  CAS  Google Scholar 

  38. Russo R (2002) Laser ablation in analytical chemistry—a review. Talanta 57:425–451. https://doi.org/10.1016/S0039-9140(02)00053-X

    Article  CAS  Google Scholar 

  39. Evertz M, Schwieters T, Börner M et al (2017) Matrix-matched standards for the quantification of elemental lithium ion battery degradation products deposited on carbonaceous negative electrodes using pulsed-glow discharge-sector field-mass spectrometry. J Anal At Spectrom 32:1862–1867. https://doi.org/10.1039/C7JA00129K

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Resource Recovery and Recycling (CR3) at WPI. We acknowledge helpful discussions with Brian Rauch from East Penn Manufacturing Co, Camille Fleuriault, Joe Grogan, and Benjamin Rodrigue from Gopher Resource, Paul Kennedy from Global Mineral Recovery, Mark Bauer from GM, and Bert Coletti from Metallo-Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Hiromichi Takebe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bong, S., Azhari, L. & Wang, Y. Laser Ablation Inductive Coupled Plasma Mass Spectroscopy (LA-ICP-MS) Analysis on Lead-Acid Battery System: Development of Evaluation Method of Sub-ppm Metal Impurity Elements. J. Sustain. Metall. 7, 610–619 (2021). https://doi.org/10.1007/s40831-021-00369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00369-9

Keywords

Navigation