Skip to main content

Advertisement

Log in

Review of Research on Condition Monitoring for Improved O&M of Offshore Wind Turbine Drivetrains

  • Review Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

This paper discusses trends in condition monitoring of modern offshore wind turbines. First an overview is given of design changes that have been made over the years to large offshore wind turbines and how this resulted in novel opportunities from a monitoring perspective. Similarly, the evolution in data source availability is discussed. From these opportunities, some ongoing research activities in the field are discussed and how they fit with the open challenges. This list is far from exhaustive. It gives an overview of some capita selecta. Particularly, the fields of advanced signal processing and requirement for innovations towards prognostic frameworks are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Use of SCADA Data for Failure Detection in Wind Turbines. In: ASME 2011 5th International Conference on Energy Sustainability, Parts A, B, and C (2011)

  2. Abboud, D., Antoni, J., Sieg-Zieba, S., Eltabach, M.: Envelope analysis of rotating machine vibrations in variable speed conditions: a comprehensive treatment. Mech. Syst. Signal Process. 84, 200–226 (2017). https://doi.org/10.1016/j.ymssp.2016.06.033

    Article  Google Scholar 

  3. Antoni, J.: Cyclic spectral analysis of rolling-element bearing signals: Facts and fictions. J. Sound Vib. 304(3–5), 497–529 (2007)

    Google Scholar 

  4. Antoni, J.: Fast computation of the kurtogram for the detection of transient faults. Mech. Syst. Signal Process. 21(1), 108–124 (2007)

    Google Scholar 

  5. Antoni, J., Xin, G., Hamzaoui, N.: Fast computation of the spectral correlation. Mech. Syst. Signal Process. 92, 248–277 (2017)

    Google Scholar 

  6. Arnalte, S., Burgos, J., Rodriguez-Amenedo, J.: Direct torque control of a doubly-fed induction generator for variable speed wind turbines. Electric Power Comp. Syst. 30(2), 199–216 (2002)

    Google Scholar 

  7. Artigao, E., Honrubia-Escribano, A., Gomez-Lazaro, E.: Current signature analysis to monitor dfig wind turbine generators: a case study. Renew. Energy 116, 5–14 (2018)

    Google Scholar 

  8. Artigao, E., Koukoura, S., Honrubia-Escribano, A., Carroll, J., McDonald, A., Gómez-Lázaro, E.: Current signature and vibration analyses to diagnose an in-service wind turbine drive train. Energies 11(4), 960 (2018)

    Google Scholar 

  9. Ashuri, T., Zaaijer, M., Martins, J., van Bussel, G., van Kuik, G.: Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy. Renew. Energy 68(5), 893–905 (2014)

    Google Scholar 

  10. Baraldi, P., Mangili, F., Zio, E.: A kalman filter-based ensemble approach with application to turbine creep prognostics. IEEE Trans. Reliab. 61(4), 966–977 (2012)

    Google Scholar 

  11. Barszcz, T., Randall, R.B.: Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mech. Syst. Signal Process. 23(4), 1352–1365 (2009)

    Google Scholar 

  12. Bogert, B.P.: The quefrency alanysis of time series for echoes; cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking. Time Ser. Anal. 93, 209–243 (1963)

    Google Scholar 

  13. Bonnardot, F., El Badaoui, M., Randall, R., Daniere, J., Guillet, F.: Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation). Mech. Syst. Signal Process. 19(4), 766–785 (2005)

    Google Scholar 

  14. Borghesani, P., Pennacchi, P., Randall, R., Sawalhi, N., Ricci, R.: Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions. Mech. Syst. Signal Process. 36(2), 370–384 (2013)

    Google Scholar 

  15. Borghesani, P., Ricci, R., Chatterton, S., Pennacchi, P.: A new procedure for using envelope analysis for rolling element bearing diagnostics in variable operating conditions. Mech. Syst. Signal Process. 38(1), 23–35 (2013)

    Google Scholar 

  16. Brink, T.S.O.M., Lutz, S.: Perspectives on how operation & maintenance (o & m) innovations contribute to the reduction of levelized cost of energy (lCOE) in offshore wind parks. Danish Wind Industry Association (2016)

  17. Bruck, M., Sandborn, P., Goudarzi, N.: A levelized cost of energy (lcoe) model for wind farms that include power purchase agreements (ppas). Renew. Energy 122, 131–139 (2018). https://doi.org/10.1016/j.renene.2017.12.100

    Article  Google Scholar 

  18. Carroll, J., Koukoura, S., McDonald, A., Charalambous, A., Weiss, S., McArthur, S.: Wind turbine gearbox failure and remaining useful life prediction using machine learning techniques. Wind Energy 22(3), 360–375 (2019)

    Google Scholar 

  19. Carroll, J.: McDonald: reliability comparison of wind turbines with dfig and pmg drive trains. IEEE Trans. Energy Convers. 30(2), 663–670 (2014)

    Google Scholar 

  20. Carroll, J., McDonald, A., Dinwoodie, I., McMillan, D., Revie, M., Lazakis, I.: Availability, operation and maintenance costs of offshore wind turbines with different drive train configurations. Wind Energy 20(2), 361–378 (2017)

    Google Scholar 

  21. Carroll, J., McDonald, A., Feuchtwang, J., McMillan, D.: Drivetrain availability in offshore wind turbines. In: European Wind Energy Association 2014 Annual Conference (2014)

  22. Carroll, J., McDonald, A., McMillan, D.: Failure rate, repair time and unscheduled o&m cost analysis of offshore wind turbines. Wind Energy 19(6), 1107–1119 (2016)

    Google Scholar 

  23. Chen, B., Matthews, P.C., Tavner, P.J.: Automated on-line fault prognosis for wind turbine pitch systems using supervisory control and data acquisition. IET Renew. Power Gener. 9(5), 503–513 (2015)

    Google Scholar 

  24. Colone, L., Dimitrov, N., Straub, D.: Predictive repair scheduling of wind turbine drive-train components based on machine learning. Wind Energy 22(9), 1230–1242 (2019)

    Google Scholar 

  25. Dao, C., Kazemtabrizi, B., Crabtree, C.: Wind turbine reliability data review and impacts on levelised cost of energy. Wind Energy 22(12), 1848–1871 (2019)

    Google Scholar 

  26. Evans, M.H., Richardson, A., Wang, L., Wood, R.: Effect of hydrogen on butterfly and white etching crack (wec) formation under rolling contact fatigue (rcf). Wear 306(1–2), 226–241 (2013)

    Google Scholar 

  27. Gould, B., Greco, A.: Investigating the process of white etching crack initiation in bearing steel. Tribol. Lett. 62(2), 26 (2016)

    Google Scholar 

  28. Guo, Y., Sheng, S., Phillips, C., Keller, J., Veers, P., Williams, L.: A methodology for reliability assessment and prognosis of bearing axial cracking in wind turbine gearboxes. Renew. Sustain. Energy Rev. 127, 109888 (2020)

    Google Scholar 

  29. Hart, E., Clarke, B., Nicholas, G., Kazemi Amiri, A., Stirling, J., Carroll, J., Dwyer-Joyce, R., McDonald, A., Long, H.: A review of wind turbine main bearings: design, operation, modelling, damage mechanisms and fault detection. Wind Energy Sci. 5(1), 105–124 (2020)

    Google Scholar 

  30. Helsen, J.: The dynamics of high power density gear units with focus on the wind turbine application, (het dynamisch gedrag van hoge vermogensdichtheidstandwielkasten toegepast op windturbines) (2012)

  31. Helsen, J., Devriendt, C., Weijtjens, W., Guillaume, P.: Condition monitoring by means of scada analysis. In: Proceedings of European Wind Energy Association International Conference Paris (2015)

  32. Helsen, J., Guo, Y., Keller, J.: Gearbox high-speed-stage bearing slip induced by electric excitation in a test facility. Wind Energy 21(11), 1191–1201 (2018)

    Google Scholar 

  33. Helsen, J., Guo, Y., Keller, J., Guillaume, P.: Experimental investigation of bearing slip in a wind turbine gearbox during a transient grid loss event. Wind Energy 19(12), 2255–2269 (2016)

    Google Scholar 

  34. Helsen, J., Peeters, C., Verstraeten, T., Verbeke, J., Gioia, N., Nowé, A.: Fleet-wide condition monitoring combining vibration signal processing and machine learning rolled out in a cloud-computing environment. In: International Conference on Noise and Vibration Engineering (ISMA) (2018)

  35. Helsen, J., Peeters, P., Vanslambrouck, K., Vanhollebeke, F., Desmet, W.: The dynamic behavior induced by different wind turbine gearbox suspension methods assessed by means of the flexible multibody technique. Renew. Energy 69, 336–346 (2014)

    Google Scholar 

  36. Helsen, J., Vanhollebeke, F., Vandepitte, D., Desmet, W.: Some trends and challenges in wind turbine upscaling. In: Proceedings of ISMA International Conference On Noise And Vibration 2012, vol. 6, pp. 4345–4359. Katholieke Univ Leuven, Department Werktuigkunde (2012)

  37. Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)

    Google Scholar 

  38. Koukoura, S., Peeters, C., Helsen, J., Carroll, J.: Investigating parallel multi-step vibration processing pipelines for planetary stage fault detection in wind turbine drivetrains. In: Journal of Physics: Conference Series, vol. 1618, p. 022054. IOP Publishing (2020)

  39. La Scala, B.F., Bitmead, R.R.: Design of an extended kalman filter frequency tracker. IEEE Trans. Signal Process. 44(3), 739–742 (1996)

    Google Scholar 

  40. Leclère, Q., André, H., Antoni, J.: A multi-order probabilistic approach for instantaneous angular speed tracking debriefing of the cmmno 14 diagnosis contest. Mech. Syst. Signal Process. 81, 375–386 (2016)

    Google Scholar 

  41. Lerch, M., De-Prada-Gil, M., Molins, C., Benveniste, G.: Sensitivity analysis on the levelized cost of energy for floating offshore wind farms. Sustain. Energy Technol. Assess. 30, 77–90 (2018). https://doi.org/10.1016/j.seta.2018.09.005

    Article  Google Scholar 

  42. Link, H., LaCava, W., van Dam, J., McNiff, B., Sheng, S., Wallen, R., McDade, M., Lambert, S., Butterfield, S., Oyague, F.: Gearbox reliability collaborative project report: findings from phase 1 and phase 2 testing. Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United States) (2011)

  43. Liserre, M., Cardenas, R., Molinas, M., Rodriguez, J.: Overview of multi-mw wind turbines and wind parks. IEEE Trans. Industr. Electron. 58(4), 1081–1095 (2011)

    Google Scholar 

  44. Moghadam, F.K., Nejad, A.R.: Evaluation of pmsg-based drivetrain technologies for 10-mw floating offshore wind turbines: Pros and cons in a life cycle perspective. Wind Energy 23(7), 1542–1563 (2020)

    Google Scholar 

  45. Nejad, A.R., Gao, Z., Moan, T.: On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains. Int. J. Fatigue 61, 116–128 (2014)

    Google Scholar 

  46. Nejad, A.R., Odgaard, P.F., Gao, Z., Moan, T.: A prognostic method for fault detection in wind turbine drivetrains. Eng. Fail. Anal. 42, 324–336 (2014)

    Google Scholar 

  47. Oppenheim, A.V., Schafer, R., Stockham, T.: Nonlinear filtering of multiplied and convolved signals. IEEE Trans. Audio Electroacoust. 16(3), 437–466 (1968)

    Google Scholar 

  48. Orozco, R., Sheng, S., Phillips, C.: Diagnostic models for wind turbine gearbox components using scada time series data. In: 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), pp. 1–9. IEEE (2018)

  49. Orozco, R., Sheng, S.S., Phillips, C.T., Williams, L.: Scada data modeling for wind turbine gearbox failure detection using machine learning and big data technologies. Technical report, National Renewable Energy Lab. (NREL), Golden, CO (United States) (2020)

  50. Peeters, C., Guillaume, P., Helsen, J.: A comparison of cepstral editing methods as signal pre-processing techniques for vibration-based bearing fault detection. Mech. Syst. Signal Process. 91, 354–381 (2017)

    Google Scholar 

  51. Peeters, C., Guillaume, P., Helsen, J.: Vibration-based bearing fault detection for operations and maintenance cost reduction in wind energy. Renew. Energy 116, 74–87 (2018)

    Google Scholar 

  52. Peeters, C., Leclère, Q., Antoni, J., Lindahl, P., Donnal, J., Leeb, S., Helsen, J.: Review and comparison of tacholess instantaneous speed estimation methods on experimental vibration data. Mech. Syst. Signal Process. 129, 407–436 (2019)

    Google Scholar 

  53. Polinder, H., Van der Pijl, F.F., De Vilder, G.J., Tavner, P.J.: Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans. Energy Convers. 21(3), 725–733 (2006)

    Google Scholar 

  54. Randall, R., Hee, J.: Cepstrum analysis. Wirel. World 88, 77–80 (1982)

    Google Scholar 

  55. Randall, R., Sawalhi, N.: Editing time signals using the real cepstrum. In: MFPT Conference, Virginia Beach, vol. 465 (2011)

  56. Randall, R., Smith, W.: Uses and mis-uses of energy operators for machine diagnostics. Mech. Syst. Signal Process. 133, 106199 (2019)

    Google Scholar 

  57. Randall, R.B.: Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive Applications. Wiley, London (2011)

    Google Scholar 

  58. Randall, R.B.: A history of cepstrum analysis and its application to mechanical problems. Mech. Syst. Signal Process. 97, 3–19 (2017). https://doi.org/10.1016/j.ymssp.2016.12.026

    Article  Google Scholar 

  59. Randall, R.B., Sawalhi, N.: Cepstral removal of periodic spectral components from time signals. In: Advances in Condition Monitoring of Machinery in Non-Stationary Operations, pp. 313–324. Springer (2014)

  60. Rémond, D., Antoni, J., Randall, R.: Editorial for the special issue on instantaneous angular speed (ias) processing and angular applications (2014)

  61. Sawalhi, N., Randall, R.B., Forrester, D.: Separation and enhancement of gear and bearing signals for the diagnosis of wind turbine transmission systems. Wind Energy 17(5), 729–743 (2014)

    Google Scholar 

  62. Schmidt, S., Heyns, P.S., Gryllias, K.C.: A discrepancy analysis methodology for rolling element bearing diagnostics under variable speed conditions. Mech. Syst. Signal Process. 116, 40–61 (2019)

    Google Scholar 

  63. Sheng, S.: Wind turbine gearbox condition monitoring round robin study. Technical report, NREL/TP-5000-54530 (2012)

  64. Sheng, S.: Wind turbine gearbox condition monitoring round robin study-vibration analysis. Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United States) (2012)

  65. Sheng, S.: Monitoring of wind turbine gearbox condition through oil and wear debris analysis: A full-scale testing perspective. Tribol. Trans. 59(1), 149–162 (2016)

    Google Scholar 

  66. Sheng, S., Guo, Y.: A prognostics and health management framework for wind. In: Turbo Expo: Power for Land, Sea, and Air, vol. 58721, p. V009T48A013. American Society of Mechanical Engineers (2019)

  67. Sieros, G., Chaviaropoulos, P., Sørensen, J.D., Bulder, B.H., Jamieson, P.: Upscaling wind turbines: theoretical and practical aspects and their impact on the cost of energy. Wind Energy 15(1), 3–17 (2012)

    Google Scholar 

  68. Spinato, F., Tavner, P.J., Van Bussel, G.J., Koutoulakos, E.: Reliability of wind turbine subassemblies. IET Renew. Power Gener. 3(4), 387–401 (2009)

    Google Scholar 

  69. Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., Keane, J., Nenadic, G.: Machine learning methods for wind turbine condition monitoring: A review. Renew. Energy 133, 620–635 (2019)

    Google Scholar 

  70. Tautz-Weinert, J., Watson, S.: Condition monitoring of wind turbine drive trains by normal behaviour modelling of temperatures. In: Conference for Wind Power Drives, p. 359 (2017)

  71. Tavner, P., Ran, L., Penman, J., Sedding, H.: Condition monitoring of rotating electrical machines, vol. 56. IET (2008)

  72. Tavner, P., Xiang, J., Spinato, F.: Reliability analysis for wind turbines. Wind Energy Int. J. Progress Appl. Wind Power Convers. Technol. 10(1), 1–18 (2007)

    Google Scholar 

  73. Urbanek, J., Barszcz, T., Sawalhi, N., Randall, R.B.: Comparison of amplitude-based and phase-based method for speed tracking in application to wind turbines. Metrol. Meas. Syst. 18(2), 295–303 (2011)

  74. Van Kuik, G., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J.N., Ferreira, C., van Wingerden, J., Schlipf, D., Gebraad, P., et al.: Long-term research challenges in wind energy-a research agenda by the European academy of wind energy. Wind Energy Sci. 1(1), 1–39 (2016)

    Google Scholar 

  75. Verstraeten, T., Nowé, A., Keller, J., Guo, Y., Sheng, S., Helsen, J.: Fleetwide data-enabled reliability improvement of wind turbines. Renew. Sustain. Energy Rev. 109, 428–437 (2019)

    Google Scholar 

  76. Wang, J., Gao, R.X., Yuan, Z., Fan, Z., Zhang, L.: A joint particle filter and expectation maximization approach to machine condition prognosis. J. Intell. Manuf. 30(2), 605–621 (2019)

  77. Wilkinson, M., Hendriks, B., Spinato, F., Harman, K., Gomez, E., Bulacio, H., Roca, J., Tavner, P., Feng, Y., Long, H.: Methodology and results of the reliawind reliability field study. In: European wind energy conference and exhibition 2010, ewec 2010, vol. 3, pp. 1984–2004. Sheffield (2010)

  78. Williams, L., Phillips, C., Sheng, S., Dobos, A., Wei, X.: Scalable wind turbine generator bearing fault prediction using machine learning: A case study. In: 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), pp. 1–9. IEEE (2020)

  79. Zappalá, D., Sarma, N., Djurović, S., Crabtree, C., Mohammad, A., Tavner, P.: Electrical & mechanical diagnostic indicators of wind turbine induction generator rotor faults. Renew. Energy 131, 14–24 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge FWO (Fonds Wetenschappelijk Onderzoek) for their support through the SB grants of Timothy Verstraeten (#1S47617N) and Cédric Peeters (#1282221N). This research was supported by funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme and under the VLAIO Supersized 4.0 ICON project and SIM-SBO MaSiWEC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Helsen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helsen, J. Review of Research on Condition Monitoring for Improved O&M of Offshore Wind Turbine Drivetrains. Acoust Aust 49, 251–258 (2021). https://doi.org/10.1007/s40857-021-00237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-021-00237-2

Keywords

Navigation