Skip to main content
Log in

An adaptive XIGA with locally refined NURBS for modeling cracked composite FG Mindlin–Reissner plates

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper is devoted to numerical investigations on mechanical behavior of cracked composite functionally graded (FG) plates. We thus develop an efficient adaptive approach in terms of the extended isogeometric analysis (XIGA) enhanced by locally refined non-uniform rational B-spline (LR NURBS) for natural frequency and buckling analysis of cracked FG Mindlin–Reissner plates. In this setting, the crack geometries, which are described by the level sets, are independent of the computational mesh; and the LR NURBS basis functions, which have the abilities of local refinement and modeling the complex shape, are used as the shape functions of XIGA. According to the recovered stresses of the first buckling or free vibration mode, a posteriori error estimator for driving the adaptive process is defined. The accuracy can be effectively improved through adaptive local refinements, demonstrated through numerical experiments with complex geometries. Compared with uniform global refinement, XIGA based on adaptive local refinement has the characteristics of high precision at low cost and fast convergence rate. The effects of some factors such as crack length and location, plate thickness, gradient index, boundary condition, loading type, etc. on critical buckling loads and natural frequencies are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Satish Kumar YV, Paik JK (2004) Buckling analysis of cracked plates using hierarchical trigonometric functions. Thin Walled Struct 42:687–700

    Article  Google Scholar 

  2. Khadem SE, Rezaee M (2000) Introduction of modified comparison functions for vibration analysis of a rectangular cracked plate. J Sound Vib 236(2):245–258

    Article  Google Scholar 

  3. Huang C, McGee O III, Chang M (2011) Vibrations of cracked rectangular FGM thick plates. Compos Struct 93:1747–1764

    Article  Google Scholar 

  4. Qian GL, Gu SN, Jiang JS (1991) A finite element model of cracked plates and application to vibration problems. Comput Struct 39(5):483–487

    Article  Google Scholar 

  5. Lee HP, Lim SP (1993) Vibration of cracked rectangular plates including transverse shear deformtion and rotary inertia. Comput Struct 49(4):715–718

    Article  MATH  Google Scholar 

  6. Liu FL (2001) Differential quadrature element method for buckling analysis of rectangular Mindlin plates having discontinuities. Int J Solids Struct 38:2305–2321

    Article  MATH  Google Scholar 

  7. Barut A, Madenci E (1997) Buckling of a thin, tension-loaded, composite plate with an inclined crack. Eng Fract Mech 58(3):233–248

    Article  Google Scholar 

  8. Brighenti R (2005) Buckling of cracked thin-plates under tension or compression. Thin Walled Struct 43:209–224

    Article  Google Scholar 

  9. Rad AA, Panahandeh-Shahraki D (2014) Buckling of cracked functionally graded plates under tension. Thin Walled Struct 84:26–33

    Article  Google Scholar 

  10. Panahandeh-Shahraki D, Rad AA (2014) Buckling of cracked functionally graded plates supported by Pasternak foundation. Int J Mech Sci 88:221–231

    Article  Google Scholar 

  11. Fantuzzi N, Tornabene F, Viola E (2016) Four-parameter functionally graded cracked plates of arbitrary shape: a GDQFEM solution for free vibrations. Mech Adv Mater Struct 23(1):89–107

    Article  Google Scholar 

  12. Kumar Sinha B (2021) Review on vibration analysis of functionally graded material structural components with cracks. J Vib Eng Technol 9:23–49

    Article  Google Scholar 

  13. Kanu NJ, Vates U, Singh G, Chavan S (2019) Fracture problems, vibration, buckling, and bending analyses of functionally graded materials: a state-of-the-art review including smart FGMS. Part Sci Technol 37(5):583–608

    Article  Google Scholar 

  14. Gayen D, Tiwari R, Chakraborty D (2019) Static and dynamic analyses of cracked functionally graded structural components: a review. Compos Part B 173:106982

    Article  Google Scholar 

  15. Bachene M, Tiberkak R, Rechak S (2009) Vibration analysis of cracked plates using the extended finite element method. Arch Appl Mech 79:249–262

    Article  MATH  Google Scholar 

  16. Natarajan S, Baiz PM, Bordas S, Rabczuk T, Kerfriden P (2011) Natural frequencies of cracked functionally graded material plates by the extended finite element method. Compos Struct 93:3082–3092

    Article  Google Scholar 

  17. Natarajan S, Chakraborty S, Ganapathi M, Subramanian M (2014) A parametric study on the buckling of functionally graded material plates with internal discontinuities using the partition of unity method. Eur J Mech A Solids 44:136–147

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu P, Bui QT, Zhu D, Yu TT, Wang WJ, Yin SH, Hirose S (2015) Buckling failure analysis of cracked functionally graded plates by a stabilized discrete shear gap extended 3-node triangular plate element. Compos Part B Eng 77(14):179–193

    Article  Google Scholar 

  19. Nasirmanesh A, Mohammadi S (2015) XFEM buckling analysis of cracked composite plates. Compos Struct 131:333–343

    Article  Google Scholar 

  20. Yu TT, Bui TQ, Liu P, Hirose S (2016) A stabilized discrete shear gap extended finite element for the analysis of cracked Reissner–Mindlin plate vibration problems involving distorted meshes. Int J Mech Mater Des 12:85–107

    Article  Google Scholar 

  21. Yang G, Hu D, Han X, Ma G (2017) An extended edge-based smoothed discrete shear gap method for free vibration analysis of cracked Reissner–Mindlin plate. Appl Math Model 51:477–504

    Article  MathSciNet  MATH  Google Scholar 

  22. De Luycker E, Benson D, Belytschko T, Bazilevs Y, Hsu M (2011) XFEM in isogeometric analysis for linear fracture mechanics. Int J Numer Methods Eng 87(6):541–565

    MATH  Google Scholar 

  23. Bhardwaj G, Singh VI, Mishra KB, Bui TQ (2015) Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions. Compos Struct 126:347–359

    Article  Google Scholar 

  24. Yin S, Yu T, Bui TQ, Liu P, Hirose S (2016) Buckling and vibration extended isogeometric analysis of imperfect graded Reissner–Mindlin plates with internal defects using NURBS and level sets. Comput Struct 177:23–38

    Article  Google Scholar 

  25. Huang J, Nguyenthanh N, Zhou K (2017) Extended isogeometric analysis based on Bézier extraction for the buckling analysis of Mindlin–Reissner plates. Acta Mech 228(9):3077–3093

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang H, Dong C, Qin X, Wu Y (2020) Vibration and buckling analyses of FGM plates with multiple internal defects using XIGA-PHT and FCM under thermal and mechanical loads. Appl Math Model 78:433–481

    Article  MathSciNet  MATH  Google Scholar 

  27. Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(3):331–356

    Article  MathSciNet  MATH  Google Scholar 

  28. Johannessen KA, Kvamsdal T, Dokken T (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269:471–514

    Article  MathSciNet  MATH  Google Scholar 

  29. Sederberg TW, Zheng J, Bakenov A, Nasri AH (2003) T-splines and T-NURCCs. ACM Trans Graph 22(3):477–484

    Article  Google Scholar 

  30. Dörfel MR, Jüttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199(5):264–275

    Article  MathSciNet  MATH  Google Scholar 

  31. Forsey DR, Bartels RH (1988) Hierarchical B-spline refinement. ACM SIGGRAPH Comput Graph 22(4):205–212

    Article  Google Scholar 

  32. Giannelli C, Jüttler B, Speleers H (2012) THB-splines: the truncated basis for hierarchical splines. Comput Aided Geom Des 29(7):485–498

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang P, Xu J, Deng J, Chen F (2011) Adaptive isogeometric analysis using rational PHT-splines. Comput Aided Des 43(11):1438–1448

    Article  Google Scholar 

  34. Zimmermann C, Sauer RA (2017) Adaptive local surface refinement based on LR NURBS and its application to contact. Comput Mech 60(6):1011–1031

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen L, de Borst R (2018) Locally refined T-splines. Int J Numer Methods Eng 114(6):637–659

    Article  MathSciNet  Google Scholar 

  36. Chen L, Verhoosel CV, de Borst R (2018) Discrete fracture analysis using locally refined T-splines. Int J Numer Methods Eng 116(2):117–140

    Article  MathSciNet  Google Scholar 

  37. Li K, Yu T, Bui TQ (2020) Adaptive extended isogeometric upper-bound limit analysis of cracked structures. Eng Fract Mech 235:107131

    Article  Google Scholar 

  38. Gu J, Yu T, Van Lich L, Tanaka S, Yuan HT, Bui TQ (2020) Crack growth adaptive XIGA simulation in isotropic and orthotropic materials. Comput Methods Appl Mech Eng 365:113016

    Article  MathSciNet  MATH  Google Scholar 

  39. Yu T, Yuan H, Gu J, Tanaka S, Bui TQ (2020) Error-controlled adaptive LR B-splines XIGA for assessment of fracture parameters in through-cracked Mindlin–Reissner plates. Eng Fract Mech 229:106964

    Article  Google Scholar 

  40. Chen X, Gu J, Yu T, Qiu L, Bui TQ (2019) Numerical simulation of arbitrary holes in orthotropic media by an efficient computational method based on adaptive XIGA. Compos Struct 229:111387

    Article  Google Scholar 

  41. Gu J, Yu T, Van Lich L, Nguyen TT, Tanaka S, Bui TQ (2018) Multi-inclusions modeling by adaptive XIGA based on LR B-splines and multiple level sets. Finite Elem Anal Des 148:48–66

    Article  MathSciNet  Google Scholar 

  42. Proserpio D, Ambati M, De Lorenzis L, Kiendl J (2020) A framework for efficient isogeometric computations of phase-field brittle fracture in multipatch shell structures. Comput Methods Appl Mech Eng 372:113362

    Article  MathSciNet  MATH  Google Scholar 

  43. Paul K, Zimmermann C, Mandadapu KK, Hughes TJR, Landis CM, Sauer RA (2020) An adaptive space-time phase field formulation for dynamic fracture of brittle shells based on LR NURBS. Comput Mech 65:1039–1062

    Article  MathSciNet  MATH  Google Scholar 

  44. Reddy JN (2000) Analysis of functionally graded plates. Int J Numer Methods Eng 47(1–3):663–684

    Article  MATH  Google Scholar 

  45. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357

    Article  MathSciNet  MATH  Google Scholar 

  46. Sosa HA, Eischen JW (1986) Computation of stress intensity factors for plate bending via a path-independent integral. Eng Fract Mech 25(4):451–462

    Article  Google Scholar 

  47. Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross-section. Philos Mag Ser 43(253):125–131

    Article  Google Scholar 

  48. Efraim E, Eisenberger M (2007) Exact vibration analysis of variable thickness thick annular isotropic and FGM plates. J Sound Vib 299(45):720–738

    Article  Google Scholar 

  49. Hosseinihashemi S, Taher HRD, Akhavan H, Omidi M (2010) Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl Math Model 34(5):1276–1291

    Article  MathSciNet  MATH  Google Scholar 

  50. Gu J, Yu T, Lich LV, Nguyen TT, Yang Y, Bui TQ (2019) Fracture modeling with the adaptive XIGA based on locally refined B-splines. Comput Methods Appl Mech Eng 354:527–567

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang JK, Yu T, Bui TQ (2021) Composite FG plates with different internal cutouts: adaptive IGA buckling analysis without trimmed surfaces. Compos Struct 259:113392

    Article  Google Scholar 

  52. Ebrahimi F, Rastgoo A, Atai AA (2009) A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate. Eu J Mech A Solids 28(5):962–973

    Article  MATH  Google Scholar 

  53. Bekele Y, Kvamsdal T, Kvarving A, Nordal S (2016) Adaptive isogeometric finite element analysis of steady-state groundwater flow. Int J Numer Anal Methods Geomech 40(5):738–765

    Article  Google Scholar 

  54. Bui TQ, Do VT, Ton T, Doan H, Tanaka S, Pham T, Nguyen-Van TA, Yu T, Hirose S (2016) On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory. Compos Part B Eng 92:218–241

    Article  Google Scholar 

Download references

Acknowledgements

TTY is supported by the National Natural Science Foundation of China (Grant nos. 11972146 and 11932006); TQB thanks to the internal support of Tokyo Tech. The financial supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiantang Yu or Tinh Quoc Bui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\begin{aligned}&{\varvec{N}}^u=\begin{bmatrix} 0 &{}R_i &{}0 \\ 0 &{} 0 &{} R_i\\ R_i &{}0 &{}0 \end{bmatrix} \end{aligned}$$
(30)
$$\begin{aligned}&{\varvec{N}}^d=\begin{bmatrix} 0 &{}{\tilde{H}}R_i &{}0 \\ 0 &{} 0 &{}{\tilde{H}} R_i\\ {\tilde{H}} R_i &{}0 &{}0 \end{bmatrix} \end{aligned}$$
(31)
$$\begin{aligned}&{\varvec{N}}^{c\alpha }=\begin{bmatrix} 0 &{}\tilde{F_\alpha }R_i &{}0 \\ 0 &{} 0 &{}\tilde{F_\alpha } R_i\\ \tilde{G_\alpha } R_i &{}0 &{}0 \end{bmatrix}, ~~\alpha =1,\ldots ,4 \end{aligned}$$
(32)
$$\begin{aligned}&{\varvec{N}}^{c5 }=\begin{bmatrix} 0 &{}0 &{}0 \\ 0 &{} 0 &{}0\\ \tilde{G_5} R_i &{}0 &{}0 \end{bmatrix} \end{aligned}$$
(33)

Appendix 2

$$\begin{aligned}&{\varvec{G}}_\mathrm{{b}}^u=\begin{bmatrix} R_{i,x} &{}0 &{}0 \\ R_{i,y} &{} 0 &{}0 \end{bmatrix} \end{aligned}$$
(34)
$$\begin{aligned}&{\varvec{G}}_\mathrm{{b}}^d=\begin{bmatrix} {\tilde{H}}R_{i,x} &{}0 &{}0 \\ {\tilde{H}} R_{i,y} &{} 0 &{}0 \end{bmatrix} \end{aligned}$$
(35)
$$\begin{aligned}&{\varvec{G}}_\mathrm{{b}}^{c\alpha }=\begin{bmatrix} \tilde{G_\alpha }R_{i,x} &{}0 &{}0 \\ \tilde{G_\alpha } R_{i,y} &{} 0 &{}0 \end{bmatrix},~~\alpha =1,\ldots ,5 \end{aligned}$$
(36)

Appendix 3

$$\begin{aligned}&{\varvec{G}}_{\mathrm{{s}}1}^u=\begin{bmatrix} 0 &{}R_{i,x} &{}0 \\ 0 &{} R_{i,y} &{}0 \end{bmatrix} \end{aligned}$$
(37)
$$\begin{aligned}&{\varvec{G}}_{\mathrm{{s}}1}^d=\begin{bmatrix} 0 &{}{\tilde{H}}R_{i,x} &{}0 \\ 0 &{}{\tilde{H}} R_{i,y} &{}0 \end{bmatrix} \end{aligned}$$
(38)
$$\begin{aligned}&{\varvec{G}}_{\mathrm{{s}}1}^{c\alpha }=\begin{bmatrix} 0 &{}\tilde{F_\alpha }R_{i,x} &{}0 \\ 0 &{}\tilde{F_\alpha } R_{i,y} &{}0 \end{bmatrix},~~\alpha =1,\ldots ,4 \end{aligned}$$
(39)
$$\begin{aligned}&{\varvec{G}}_{\mathrm{{s}}1}^{c5 }=\begin{bmatrix} 0 &{}0 &{}0 \\ 0 &{}0 &{}0 \end{bmatrix} \end{aligned}$$
(40)

Appendix 4

$$\begin{aligned}&{\varvec{G}}_{\mathrm{{s}}2}^u=\begin{bmatrix} 0 &{} 0 &{}R_{i,x} \\ 0 &{} 0 &{}R_{i,y} \end{bmatrix} \end{aligned}$$
(41)
$$\begin{aligned}&{\varvec{G}}_{\mathrm{{s}}2}^u=\begin{bmatrix} 0 &{} 0 &{}{\tilde{H}}R_{i,x} \\ 0 &{} 0 &{}{\tilde{H}}R_{i,y} \end{bmatrix} \end{aligned}$$
(42)
$$\begin{aligned}&{\varvec{G}}_{\mathrm{{s}}2}^u=\begin{bmatrix} 0 &{} 0 &{}\tilde{F_\alpha }R_{i,x} \\ 0 &{} 0 &{}\tilde{F_\alpha }R_{i,y} \end{bmatrix},~~\alpha =1,\ldots ,4 \end{aligned}$$
(43)
$$\begin{aligned}&{\varvec{G}}_{\mathrm{{s}}2}^{c5 }=\begin{bmatrix} 0 &{}0 &{}0 \\ 0 &{}0 &{}0 \end{bmatrix} \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yu, T. & Bui, T.Q. An adaptive XIGA with locally refined NURBS for modeling cracked composite FG Mindlin–Reissner plates. Engineering with Computers 38, 3639–3661 (2022). https://doi.org/10.1007/s00366-021-01334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01334-6

Keywords

Navigation